Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 89-93    https://doi.org/10.11896/j.issn.1005-023X.2017.016.018
  材料研究 |
AC-HVAF非晶和金属陶瓷涂层在压裂液中空蚀行为研究*
孙丽丽, 王尊策, 王勇
东北石油大学机械科学与工程学院, 大庆 163318
Cavitation Corrosion Mechanism of AC-HVAF Sprayed Amorphous Metallic Coatings and Cermet Coatings in the Hydraulic Fracturing Fluid
SUN Lili, WANG Zunce, WANG Yong
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318
下载:  全 文 ( PDF ) ( 1456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用超声空蚀与电化学测试相结合的方法,对AC-HVAF热喷涂非晶金属和金属陶瓷两种涂层在水力压裂液中的空蚀及交互作用规律进行了研究,分析了耐蚀性和硬度在空蚀时的主导作用,确定了空蚀机理。结果表明,压裂液中KCl恶化了涂层的腐蚀性能,进而影响了空蚀行为。涂层在压裂液中的抗空蚀性能是耐蚀性与硬度结合的双变量函数。空化的力学破坏对高硬度涂层的空蚀过程有显著影响,硬度相对较高的金属陶瓷防护涂层的抗空蚀性能优异。压裂工况下,AC-HVAF涂层空蚀损伤是由于气泡溃灭垂直冲击孔隙或缺陷区域,硬相直接被剥离表面。降低孔隙和提高粘结相结合强度有助于提高涂层在压裂液中的抗空蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙丽丽
王尊策
王勇
关键词:  非晶涂层  陶瓷涂层  压裂液  空蚀  交互    
Abstract: The cavitation-erosion rules and synergistic mechanism of the AC-HVAF sprayed Fe-based amorphous metallic and WC-10Co-4Cr metallic cermet coatings in hydraulic fracturing fluid were studied by means of the ultrasonic cavitation and electrochemical testing methods. The leading role of the corrosion resistance and hardness during the cavitation was determined. The results showed that the existing of KCl in the fracturing fluid had a significant impact on the cavitation behavior of the coatings, especially for the lower corrosion resistance of metallic cermet coating. The cavitation performance of coatings in fracturing fluid was a double variable function of corrosion resistance and hardness. Mechanical damage of cavitation had a significant effect on cavitation erosion process of high hardness coating. The cavitation-erosion resistance of coatings was mainly dependent to hardness, and the high hardness of WC metallic cermet coating exhibited excellent cavitation-erosion resistance. The cavitation-erosion damage of coatings originated from the pores and defect areas, the hard phases striped off the surface and thus led to the damage of the hard metals and coa-tings. Reducing porosity and improving bonding strength were helpful to improve the corrosion resistance of coatings in fracturing fluid.
Key words:  amorphous metallic coating    cermet coating    hydraulic fracturing fluid    cavitation    synergistic effect
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51401051);黑龙江省博士后科研启动金(LBH-Q16036)
通讯作者:  王勇:通讯作者,男,1979年生,博士,副教授,主要从事材料腐蚀与防护研究 E-mail:wangyongsll@163.com   
作者简介:  孙丽丽:女,1982年生,博士,讲师,主要从事材料多相流损伤数值模拟和实验研究 E-mail:sunliliwy@163.com
引用本文:    
孙丽丽, 王尊策, 王勇. AC-HVAF非晶和金属陶瓷涂层在压裂液中空蚀行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 89-93.
SUN Lili, WANG Zunce, WANG Yong. Cavitation Corrosion Mechanism of AC-HVAF Sprayed Amorphous Metallic Coatings and Cermet Coatings in the Hydraulic Fracturing Fluid. Materials Reports, 2017, 31(16): 89-93.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.018  或          https://www.mater-rep.com/CN/Y2017/V31/I16/89
1 Chen Z, Wang Z D, Zeng H G. Status quo and prospect of staged fracturing technique in horizontal wells [J]. Nat Gas Ind,2007,22(9):78(in Chinese).
陈作,王振铎,曾华国.水平井分段压裂工艺技术现状及展望[J].天然气工业,2007,22(9):78.
2 Zhang X Y. Study on erosion wear mechanism of tool materials and surface coatings in the condition of fracturing [D]. Daqing: Northeast Petroleum University,2013(in Chinese).
张旭昀.压裂工况下工具材料及表面涂层冲刷磨损机理研究[D].大庆:东北石油大学,2013.
3 Sun L L. Cavitation-abrasion behavior and damage mechanisms of typical materials in hydrajet fracturing [D]. Daqing: Northeast Petroleum University,2015(in Chinese).
孙丽丽.水力压裂工况下典型材质损伤行为及机理研究[D].大庆:东北石油大学,2015.
4 Jacek Ryl, Joanna Wysocka, Pawel Slepski, et al.Instantaneous impedance monitoring of synergistic effect between cavitation erosion and corrosion processes[J].Electrochim Acta,2016,203(10):388.
5 Farmer J C, et al. Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4[J]. J Mater Res,2007,22:2297.
6 Wang Y, ZhengY G, Ke W, et al.Slurry erosion-corrosion beha-viour of high-velocity oxy-fuel (HVOF) sprayed Fe-based amorphous metallic coatings for marine pump in sand-containing NaCl solutions[J]. Corros Sci,2011,53:3177.
7 Wang Y, Xing Z Z, Luo Q, et al. Corrosion and erosion-corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings in chloride-containing solutions[J]. Corros Sci,2015,98(6):339.
8 Chen B Q, Yun C H, Zou H L,et al. An overview on the corrosion resistance of amorphous and nonocrystalline soft magnetic material [J]. Mater Rev,2006,20(12):113(in Chinese).
陈伯渠,云翠华,邹洪流,等.非晶及纳米晶软磁材料耐腐蚀性能的研究现状[J].材料导报,2006,20(12):113.
9 Liu C L, Lin Y Y, Wang Y Q,et al. Progress in coatings on the surface of metals for anti-cavitation corrosion [J]. Mater Rev:Rev,2011,25(1):127(in Chinese).
刘成龙,林英英,王玥霁,等.金属材料表面抗空蚀涂层的研究进展[J].材料导报:综述篇,2011,25(1):127.
10 Liu W, Zheng Y G, Yao Z M, et al. Research progress on cavitation erosion of metallic materials[J]. J Chin Soc Corros Protection,2001,21(4):250(in Chinese).
柳伟, 郑玉贵, 姚治铭, 等. 金属材料的空蚀研究进展[J]. 中国腐蚀与防护学报,2001,21(4):250.
11 Zheng Y G, Yao Z M, Wei X Y, et al. The synergistic effect between erosion and corrosion in acidic slurry medium[J]. Wear,1995,186-187:555.
12 Zhao K, Gu C Q, Shen F S, et al. Study on mechanism of combined action of abrasion and cavitation erosion on some engineering steels[J]. Wear,1993,162-164:811.
13 John R Blak, Giles S Keen, Robert P Tong. Acoustic cavitation: The fluid dynamics of non-spherical bubbles [J]. Philosophical Trans A,1999,357(2):251.
14 Zhao M, Wang S L, Jiang N. Effect of microstructure of TiN layer on wear resistance of CVD TiC-TiCN-TiN multilayer coating [J]. Mater Rev:Res,2016,30(5):51(in Chinese).
赵嫚,王少龙,江南.TiN层微观结构对CVD TiC-TiCN-TiN多层涂层耐磨性能的影响[J].材料导报:研究篇,2016,30(5):51.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[3] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[4] 王哲昊, 吕绪明. 等离子喷涂技术在工程陶瓷涂层制备中的应用现状及展望[J]. 材料导报, 2024, 38(11): 23110033-10.
[5] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[6] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[7] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[8] 姚亿文, 杨飞跃, 赵爽, 陈国兵, 李昆锋, 杨自春. 新型陶瓷涂层的制备、结构调控及应用研究进展[J]. 材料导报, 2022, 36(23): 21010029-7.
[9] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[10] 张春芝, 尚希昌, 孙晟瑄, 单美琳, 王灿明, 崔洪芝. 激光熔覆高性能Fe基非晶涂层的研究进展[J]. 材料导报, 2022, 36(15): 21020101-8.
[11] 丛巍巍, 桂泰江, 张凯, 王泽昊, 吕钊. 船舶螺旋桨表面防护涂层性能研究[J]. 材料导报, 2021, 35(z2): 367-371.
[12] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[13] 李恩重, 郭伟玲, 刘军, 于鹤龙, 徐滨士. 先驱体转化陶瓷涂层的裂解方法研究进展[J]. 材料导报, 2021, 35(21): 21151-21158.
[14] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[15] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed