Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 42-49    https://doi.org/10.11896/j.issn.1005-023X.2017.015.007
  材料综述 |
亚微级氧化锌空心球的制备及其光催化性能研究进展*
鲍艳, 封彩萍
陕西科技大学轻工科学与工程学院,西安710021;
Progress in Submicrometric ZnO Hollow Spheres and Photocatalytic Properties
BAO Yan, FENG Caiping
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021;
下载:  全 文 ( PDF ) ( 1992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 亚微级ZnO空心球由于具有密度低、比表面积大、结构规整、尺寸可控等优点及众多优异的物理化学性能,引起科研工作者的广泛关注。因此,探索简单易行、经济高效的亚微级ZnO空心球的制备方法成为关注的热点。结合课题组在亚微级ZnO空心球方面的研究进展和国内外在其制备过程中涌现出的新方法,如水热法、声化学法、超声辅助水热法、静电纺丝法和微波辐射法等,对中空ZnO的制备新技术进行了综述。同时,对这些方法的基本原理、特点、应用情况等进行了总结,并对中空ZnO的光催化性能进行了综述。最后,在此基础上对亚微级ZnO空心球的发展方向和前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍艳
封彩萍
关键词:  亚微级ZnO空心球  水热法  声化学法  静电纺丝法  微波辐射法  光催化性能    
Abstract: The submicrometric ZnO hollow spheres with low density, large specific surface area, well-defined structure, controllable size, and many other special physical and chemical properties, have attracted a great deal of attentions. Consequently, seeking simple, highly efficient and economical synthesis technique for submicrometric ZnO hollow spheres has been a focus of attention. Based on our previous study in the field of hollow ZnO and the predecessors work, a comprehensive overview of some novel preparation technologies of submicrometric ZnO hollow spheres, including hydrothermal method, sonochemical method, ultrasonic assisted hydrothermal method, electrostatic spinning and microwave irradiation are introduced in this paper. The mechanism, characteristics and applications of these techniques are also summarized. In addition, the photocatalytic performance of submicrometric ZnO hollow spheres is introduced. Besides, the research foreground of submicrometric ZnO hollow spheres is proposed briefly.
Key words:  submicrometric ZnO hollow spheres    hydrothermal method    sonochemical method    electrostatic spinning method    microwave irradiation method    photocatalytic properties
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TQ132  
基金资助: *新世纪优秀人才支持计划(NCET-13-0885);国家自然科学基金(21376145);陕西科技大学科研创新团队项目(TD12-03)
作者简介:  鲍艳:女,1981年生,博士,教授,博士研究生导师,研究方向为有机-无机杂化纳米材料的合成及应用 E-mail:baoyan0611@126.com
引用本文:    
鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
BAO Yan, FENG Caiping. Progress in Submicrometric ZnO Hollow Spheres and Photocatalytic Properties. Materials Reports, 2017, 31(15): 42-49.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.007  或          https://www.mater-rep.com/CN/Y2017/V31/I15/42
1 She X, Chen L, Velleman L, et al. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by eudragit for targeted drug delivery[J]. J Colloid Interface Sci,2015,445:151.
2 Mohamed R M, McKinney D, Kadi M W, et al. Cobalt/zinc oxide hollow spheres: Visible light nanophotocatalysts[J]. Ceram Int,2016,42(2):2299.
3 Wang Y, Zhu S, Chen X, et al. One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity[J]. Appl Surf Sci,2014,307:263.
4 Bera S, Pal M, Naskar A, et al. Hierarchically structured ZnO-graphene hollow microspheres towards effective reusable adsorbent for organic pollutant via photodegradation process[J]. J Alloys Compd,2016,669:177.
5 Wang L, Lou Z, Fei T, et al. Templating synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties[J]. J Mater Chem,2012,22(11):4767.
6 Lai X, Halpert J E, Wang D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems[J]. Energy Environ Sci,2012,5(2):5604.
7 Gao L, He J. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coa-tings[J]. J Colloid Interface Sci,2013,396:152.
8 Xu S, Hessel C M, Ren H, et al. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention[J]. Energy Environ Sci,2014,7(2):632.
9 Zhang F, Li X, et al. Fabrication of α-Fe2O3/In2O3 composite hollow microspheres: A novel hybrid photocatalyst for toluene degradation under visible light[J]. J Colloid Interface Sci,2015,457:18.
10 Sun C, Rajasekhara S, Chen Y, et al. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing pro-perties[J]. Chem Commun,2011,47(48):12852.
11 Hao S, Zhang B, Ball S, et al. Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries[J]. Mater Des,2016,92:160.
12 Liu S, Yu B, Zhang T. A novel non-enzymatic glucose sensor based on NiO hollow spheres[J]. Electrochim Acta,2013,102:104.
13 Zhang P, Ma X, Guo Y, et al. Size-controlled synthesis of hierarchical NiO hollow microspheres and the adsorption for Congo red in water[J]. Chem Eng J,2012,189:188.
14 He S, Li J, Wang J, et al. Facile synthesis and lithium storage performance of hollow CuO microspheres[J]. Mater Lett,2014,129:5.
15 Lo S S, Huang D. Morphological variation and Raman spectroscopy of ZnO hollow microspheres prepared by a chemical colloidal process[J]. Langmuir,2010,26(9):6762.
16 Bao Y, Wang C, Ma J. Morphology control of ZnO microstructures by varying hexamethylenetetramine and trisodium citrate concentration and their photocatalytic activity[J]. Mater Des,2016,101:7.
17 Chen Z, Wang F, Zhang H, et al. Synthesis of uniform hollow TiO2 and SiO2 microspheres via a freezing assisted reverse microemulsion-templated sol-gel method[J]. Mater Lett,2015,151:16.
18 Bao Y, Shi C, Wang T, et al. Recent progress in hollow silica: Template synthesis, morphologies and applications[J]. Microp Mesop Mater,2016,227:121.
19 Wang D, Du S, Zhou X, et al. Template-free synthesis and gas sensing properties of hierarchical submicrometer ZnO hollow spheres[J]. Cryst Eng Comm,2013,5(37):7438.
20 Patrinoiu G, Tudose M, Calderón-Moreno J M, et al. A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties[J]. J Solid State Chem,2012,186:17.
21 Wang L, Ma C, Ru X, et al. Facile synthesis of ZnO hollow microspheres and their high performance in photocatalytic degradation and dye sensitized solar cells[J]. J Alloys Compd,2015,647:57.
22 Chen M, Ye C, Zhou S, et al. Recent advances in applications and performance of inorganic hollow spheres in devices[J]. Adv Mater,2013,25(37):5343.
23 Li H, Cui Y, Hong W, et al. Photocatalytic performance of Pr/In/Nd composite oxides synthesized by solid state reaction[J]. Ceram Int,2013,39(6):6583.
24 Serio S, Torge M E M, Coutinho M L, et al. Spectroscopic studies of anatase TiO2 thin films prepared by DC reactive magnetron sputtering[J]. Chem Phys Lett,2011,508(8):71.
25 Zhu S, Tian X, Chen J, et al. A facile approach to construct multiple structured ZnO crystals by trisodium citrate-assisted hydrothermal growth toward performance enhancement of dye-sensitized solar cells[J]. J Phys Chem C,2013,118(30):16401.
26 Bao Y, Wang C, Ma J. A two-step hydrothermal route for synthesis hollow urchin-like ZnO microspheres[J]. Ceram Int,2016,42(8):10289.
27 Zang Z, Wen M, Chen W, et al. Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates[J]. Mater Des,2015,84:418.
28 Lan S, Liu L, Li R, et al. Hierarchical hollow structure ZnO: Synthesis, characterization, and highly efficient adsorption/photocatalysis toward Congo red[J]. Ind Eng Chem Res,2014,53(8):3131.
29 Zhang H, Xu C, Sheng P, et al. Synthesis of ZnO hollow spheres through a bacterial template method and their gas sensing properties[J]. Sens Actuators B: Chem,2013,181:99.
30 Zhao B, Shao G, Fan B, et al. Preparation and microwave absorption of porous hollow ZnO by CO2 soft-template[J]. Adv Powder Technol,2014,25(6):1761.
31 Kim S H, Olson T Y, Satcher J H, et al. Hierarchical ZnO structures templated with amino acid based surfactants[J]. Microp Mesop Mater,2012,151:64.
32 Patrinoiu G, Calderón-Moreno J M, Chifiriuc C M, et al. Tunable ZnO spheres with high anti-biofilm and antibacterial activity via a simple green hydrothermal route[J]. J Colloid Interface Sci,2016,462:64.
33 Zhang Y, Shi E W, Chen Z Z, et al. Fabrication of ZnO hollow nanospheres and “jingle bell” shaped nanospheres[J]. Mater Lett,2008,62(8):1435.
34 Matsuyama K, Mishima K, Kato T, et al. Preparation of submicrometer ZnO hollow spheres using poly(methyl methacrylate) as a template with supercritical CO2-ethanol solution[J].J Am Chem Soc,2010,49:8510.
35 Zhou Y, Li M, Wang Y, et al. Synthesis of sea urchin-like ZnO by a simple soft template method and its photoelectric properties[J]. Mater Sci Semicond Processing,2014,27:1050.
36 Zhou H, Fan T, Zhang D. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J]. Microp Mesop Mater,2007,100(1):322.
37 Bao Y, Wang C, Ma J. Trisodium citrate as bridging and suppres-sing agent to control synthesis of ZnO hollow hierarchical microspheres and their photocatalytic properties[J]. Ceram Int,2016,42(1):1746.
38 Siddaramanna A, Thipperudraiah K V, Chandrappa G T. Simple non-basic solution route for the preparation of zinc oxide hollow spheres[J]. Physica E: Low-dimens Syst Nanostruct,2012,44(7):1346.
39 Guo W, Liu T, Sun R, et al. Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances[J]. Sens Actuators B: Chem,2013,178:53.
40 Sun H, Wang L, Chu D, et al. Facile template-free hydrothermal fabrication of ZnO hollow microspheres for gas sensing applications[J]. Ceram Int,2014,40(10):16465.
41 Yin M, Liu S. Preparation of ZnO hollow spheres with different surface roughness and their enhanced gas sensing property[J]. Sens Actuators B: Chem,2014,197:58.
42 Zhang X, Zhao H, Tao X, et al. Sonochemical method for the pre-paration of ZnO nanorods and trigonal-shaped ultrafine particles[J]. Mater Lett,2005,59(14):1745.
43 Hu X L, Zhu Y J, Wang S W. Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods[J]. Mater Chem Phys,2004,88(2):421.
44 Bang J H, Suslick K S. Applications of ultrasound to the synthesis of nanostructured materials[J]. Adv Mater,2010,22(10):1039.
45 Pokhrel N, Vabbina P K, Pala N. Sonochemistry: Science and engineering[J]. Ultrason Sonochem,2016,29:104.
46 Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot[J]. J Am Chem Soc,1986,108(18):5641.
47 Suslick K S. Sonochemistry[J]. Science,1990,247(4949):1439.
48 Jia X, Fan H, Zhang F, et al. Using sonochemistry for the fabrication of submicrometer ZnO hollow spheres[J]. Ultrason Sonochem,2010,17(2):284.
49 He C X, Lei B X, Wang Y F, et al. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells[J]. Chemistry—A Eur J,2010,16(29):8757.
50 Nguyen D T, Kim K S. Structural evolution of highly porous/hollow ZnO nanoparticles in sonochemical process[J]. Chem Eng J,2015,276:11.
51 Ameta G, Pathak A K, Ameta C, et al. Sonochemical synthesis and characterization of imidazolium based ionic liquids: A green pathway[J]. J Mol Liquids,2015,211:934.
52 Abdelhamid H N. Ionic liquids for mass spectrometry: Matrices, separation and microextraction[J]. TrAC Trends Anal Chem,2015,77:122.
53 Kowsari E. Sonochemically assisted synthesis and application of hollow spheres, hollow prism, and coralline-like ZnO nanophotocatalyst[J]. J Nanoparticle Res,2011,13(8):3363.
54 Ameen S, Akhtar M S, Seo H K, et al. An electrochemical sensing platform based on hollow mesoporous ZnO nanoglobules modified glassy carbon electrode: Selective detection of piperidine chemical[J]. Chem Eng J,2015,270:564.
55 Xie Q, Ma Y, Wang X, et al. Electrostatic assembly of sandwich-like Ag-C@ ZnO-C@ Ag-C hybrid hollow microspheres with excellent high-rate lithium storage properties[J]. ACS Nano,2016,10(1):1283.
56 Xie Q, Li J, Tian Q, et al. Template-free synthesis of zinc citrate yolk-shell microspheres and their transformation to ZnO yolk-shell nanospheres[J]. J Mater Chem,2012,22(27):13541.
57 Zhu C, Lu B, Su Q, et al. A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst[J]. Nanoscale,2012,4(10):3060.
58 Zhao X, Qi L. Rapid microwave-assisted synthesis of hierarchical ZnO hollow spheres and their application in Cr (Ⅵ) removal[J]. Nanotechnology,2012,23(23):235604.
59 Li X, Wang C, Guo H, et al. Double-shell architectures of ZnFe2O4 nanosheets on ZnO hollow spheres for high-performance gas sensors[J]. ACS Appl Mater Interfaces,2015,7(32):17811.
60 Zhang C, Yin L W, Zhang L Y, et al. Preparation and photocataly-tic activity of hollow ZnO and ZnO-CuO composite spheres[J]. Mater Lett,2012,67:303.
61 Lee W W, Chung W H, Lu C S, et al. A study on the degradation efficiency and mechanisms of ethyl violet by HPLC-PDA-ESI-MS and GC-MS[J]. Sep Purif Technol,2012,98:488.
62 Patrinoiu G, Tudose M, Calderón-Moreno J M, et al. A green chemical approach to the synthesis of photoluminescent ZnO hollow spheres with enhanced photocatalytic properties[J]. J Solid State Chem,2012,186:17.
63 Yu J, Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J]. Environ Sci Technol,2008,42(13):4902.
[1] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[2] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[3] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[4] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[5] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[6] 裴胤昌, 莫胜鹏, 解庆林, 陈南春. 红辉沸石两步水热制备高品质X型分子筛及其高效吸附Cd2+、Ni2+性能研究[J]. 材料导报, 2023, 37(24): 22050310-9.
[7] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[8] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[9] 郭生伟, 王鑫, 薛敏, 李丹, 王固霞. 声化学法制备巯基壳聚糖/黄芪油微胶囊[J]. 材料导报, 2022, 36(6): 21010096-5.
[10] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[11] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[12] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[13] 李增鹏, 戴剑锋, 成晨, 冯伟. BiFeO3多铁材料形貌与磁光性能调控研究[J]. 材料导报, 2022, 36(11): 20120114-7.
[14] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[15] 杜广智, 张骞, 廖继飞, 林玉, 伍凡, 向将来, 王晓如, 张瑞阳. 水热处理增强磷酸钴催化臭氧分解性能的研究[J]. 材料导报, 2021, 35(z2): 81-85.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed