Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 128-137    https://doi.org/10.11896/j.issn.1005-023X.2017.011.018
  新材料新技术 |
卟啉-多肽超分子组装体系的研究进展*
胡建新1,2,3, 李凤清1,2,3, 周雪琴1,2,3, 刘东志1,2,3, 汪天洋1,2,3, 李巍1,2,3
1 天津大学化工学院,天津300350;
2 天津化学化工协同创新中心,天津300350;
3 天津市功能精细化学品技术工程中心,天津300350
Development of Porphyrin-Peptides Supramolecular Assembly Systems
HU Jianxin1,2,3, LI Fengqing1,2,3, ZHOU Xueqin1,2,3, LIU Dongzhi1,2,3, WANG Tianyang1,2,3, LI Wei1,2,3
1 School of Chemical Engineering, Tianjin University, Tianjin 300350;
2 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350;
3 Tianjin Functional Fine Chemical Technology Engineering Center, Tianjin 300350
下载:  全 文 ( PDF ) ( 2100KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,卟啉-多肽的超分子组装体系的研究受到了国内外学者的广泛关注,已成为超分子化学、生物材料科学研究的前沿领域之一。卟啉-多肽超分子组装体系因具有结构和功能多样化以及良好的生物相容性等优点,在生物传感、药物治疗、分子识别和光电器件等方面展示出巨大的应用潜力。文章综述了卟啉和多肽超分子构筑模块的分子结构设计、组装体的形貌调控、组装体应用3个方面的主要研究进展,介绍了卟啉与多肽分子之间的主要非共价作用方式,包括分子间静电相互作用、氢键、配位键、亲水/疏水性等,分析了该领域当前研究的焦点及亟需解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡建新
李凤清
周雪琴
刘东志
汪天洋
李巍
关键词:  卟啉-多肽  超分子组装  形貌调控  生物医学  组织工程    
Abstract: The supramolecular assembly systems of porphyrin-peptides have attracted considerable research interest in the field of supramolecular chemistry and biomaterials. Porphyrin-peptides assembly systems exhibit great potential for various applications such as biosensor, biomedicine, molecular recognition and optoelectronic devices due to the structural diversity, facile function and excellent biocompatibility. This paper reviews recent developments in the assembly of porphyrin-peptides from the perspectives of molecular design for the building blocks, assembly morphology control and assembly application. Moreover, it also provides an introduction about the main non-covalent interactions between porphyrin and peptides, including electrostatic interaction, hydrogen bond, coordination bond and hydrophilic/hydrophobic interaction,as well as the key issues and focus in this field for further research.
Key words:  porphyrin-peptides    supramolecular assembly    morphology control    biomedicine    tissue engineering
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  O641.3  
基金资助: 国家自然科学基金(20976122);天津市科技创新平台计划项目(14TXGCCX0001)
通讯作者:  李巍:通讯作者,男,1972年生,硕士,副研究员,研究方向为精细化工 E-mail:liwei2008@tju.edu.cn   
作者简介:  胡建新:男,1992年生,硕士研究生,研究方向为卟啉-六肽的制备与自组装 E-mail:850302736@qq.com
引用本文:    
胡建新, 李凤清, 周雪琴, 刘东志, 汪天洋, 李巍. 卟啉-多肽超分子组装体系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 128-137.
HU Jianxin, LI Fengqing, ZHOU Xueqin, LIU Dongzhi, WANG Tianyang, LI Wei. Development of Porphyrin-Peptides Supramolecular Assembly Systems. Materials Reports, 2017, 31(11): 128-137.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.018  或          https://www.mater-rep.com/CN/Y2017/V31/I11/128
1 Zhang Tongyan, Xiong Haomiao, Yin Zhigang, et al. A new sort of chemical functional materials-cucurbiturils and theirself-assembled host-guest complexes with fluorescent compounds[J]. Mater Rev:Rev,2016,30(10):101(in Chinese).
张同艳,熊浩淼,尹志刚,等. 新型化学功能材料——瓜环与荧光化合物的主客体自组装研究进展[J]. 材料导报:综述篇,2016,30(10):101.
2 Wang Li, Li Wei, Liu Dongzhi, et al. Research progress of self-assembly methods to prepare porphyrin nanomaterials insolution[J]. Chem Ind Eng Prog,2013,32(9):2160(in Chinese).
王丽,李巍,刘东志,等. 溶液自组装法制备卟啉纳米材料研究进展[J]. 化工进展,2013,32(9):2160.
3 Wei Ran. Controllable self-assembly and drug delivery of small heptapeptide biomolecules[D].Shanghai:Donghua University, 2014(in Chinese).
魏然. 七肽小分子自组装调控及载药功能研究[D]. 上海:东华大学,2014.
4 许大全. 光合作用学[M]. 北京:科学出版社,2013:471.
5 Roszak A W, Howard T D, Southall J, et al. Crystal structure of the RC-LH1 core complex from rhodopseudomonas palustris[J]. Science,2003,302(5652):1969.
6 Amunts A, Toporik H, Borovikova A, et al. Structure determination and improved model of plant photosystem Ⅰ[J]. J Biol Chem,2010,285(5):3478.
7 Liu Z, Yan H, Wang K, et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution[J]. Nature,2004, 428(6980):287.
8 De la torre G, Bottari G, Sekita M, et al. A voyage into the synthesis and photophysics of homo-and heterobinuclear ensembles of phthalocyanines and porphyrins[J]. Chem Soc Rev,2013,42(20):8049.
9 Liu Z B, Xu Y F, Zhang X Y, et al. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties[J].J Phys Chem B,2009,113(29):9681.
10 Keinan S, Therien M J, Beratan D N, et al. Molecular design of porphyrin-based nonlinear optical materials[J].J Phys Chem A, 2008,112(47):12203.
11 Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluo-rescence microscopy[J]. Science,1990,248(4951):73.
12 Dy J T, Maeda R, Nagatsukay, et al. A photochromic porphyrin-perinaphthothioindigo conjugate and its two-photon absorption pro-perties[J]. Chem Commun,2007(48):5170.
13 Seo J W, Jang S Y, Kim D, et al. Octupolar trisporphyrin conjugates exhibiting strong two-photon absorption[J]. Tetrahedron, 2008,64(12):2733.
14 Wang T Y, Hu X X, Sun H Y, et al. Photophysical processes in a novel porphyrin-perylene metallosupramolecule with a long-lived triplet state[J]. Chem J Chinese Univ,2014,35(8):1753.
15 Ward M D, Raithby P R. Functional behaviour from controlled self-assembly: Challenges and prospects[J]. Chem Soc Rev,2013, 42(4):1619.
16 Guo P, Chen P, Liu M. Porphyrin assemblies via a surfactant-assisted method: From nanospheres to nanofibers with tunable length[J]. Langmuir,2012,28(44):15482.
17 Kano K, Minamizono H, Kitae T, et al. Self-aggregation of cationic porphyrins in water. Can π-π stacking interaction overcome electrostatic repulsive force[J].J Phys Chem A,1997,101(34):6118.
18 Chang K, Tang Y, Fang X, et al. Incorporation of porphyrin to π-conjugated backbone for polymer-dot sensitized photodynamic therapy[J]. Biomacromolecules,2016,17(6):2128.
19 Rao Y, Kim T, Park K H, et al. π-Extended “earring” porphyrins with multiple cavities and near-infrared absorption[J]. Angew Chem,2016,128(22):6548.
20 Yang Z, Liang G, Xu B. Supramolecular hydrogels based on β-amino acid derivatives[J]. Chem Commun,2006(7):738.
21 Toledano S, Williams R J, Jayawama V, et al. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis[J]. Adv Mater Chem Soc,2006,128:1070.
22 Yang S R, Ren S L, Zhang J Y, et al. Structure and self-assembly mechanism of self-assembled monolayers[J]. Chem J Chin Univ, 2001,22(3):470.
23 Zou Q, Liu K, Abbas M, et al. Peptide-modulated self-assembly of chromophores toward biomimetic light-harvesting nanoarchi tecto-nics[J]. Adv Mater,2016,28(6):1031.
24 Han F F, Liang D, Wang H M, et al. Conductive properties of poly (3-octylthiophene)/multi-walled carbon nanotubes composites[J]. Acta Chim Sin,2009,67(7):611.
25 Kuciauskas D, Caputo G A. Self-assembly of peptide-porphyrin complexes leads to pH-dependent excitonic coupling[J].J Phys Chem B,2009,113(43):14439.
26 Fairman R, Åkerfeldt K S. Peptides as novel smart materials[J]. Curr Opin Struct Biol,2005,15(4):453.
27 Kovaric B C, Kokona B, Schwab A D, et al. Self-assembly of peptide porphyrin complexes:Toward the development of smart biomaterials[J]. J Am Chem Soc,2006,128(13):4166.
28 Monti D, Rossi M D E, Sorrenti A, et al. Supramolecular chirality in solvent-promoted aggregation of amphiphilic porphyrin derivatives: Kinetic studies and comparison between solution behavior and solid-state morphology by AFM topography[J]. Chem Eur J,2010,16(3):860.
29 Monti D, Stefanelli M, Raggio M, et al. Solid state deposition of chiral amphiphilic porphyrin derivatives on glass surface[J]. J Porphyrins Phthalocyanines,2011,15(12):1209.
30 Imai H, Munakata H, Uemori Y, et al. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin[J]. Inorg Chem,2004,43(4):1211.
31 Li F, Wang T, Wang L, et al. Using glycine-induced nanoparticle to enhance photo-induced electron transfer efficiency in donoracceptor system[J]. Dyes Pigments,2017,140:116.
32 Charalambidis G, Kasotakis E, Lazarides T, et al. Self-assembly into spheres of a hybrid diphenylalanine-porphyrin: Increased fluorescence lifetime and conserved electronic properties[J]. Chem Eur J,2011,17(26):7213.
33 Karikis K, Georgilis E, Charalambidis G, et al. Corrole and porphyrin amino acid conjugates: Synthesis and physicochemical properties[J]. Chem Eur J,2016,22(32):11245.
34 Teixeira R, Andrade S M, Vaz serra V, et al. Reorganization of self-assembled dipeptide porphyrin J-aggregates in water-ethanol mixtures[J].J Phys Chem B,2012,116(8):2396.
35 Rusin O, Hub M, Kral V. Novel water-soluble porphyrin-based receptors for saccharide recognition[J]. Mater Sci Eng C,2001,18(1):135.
36 Hemández-eguía L P, Brea R J, Castedo L, et al. Regioisomeric control induced by DABCO coordination to rotatable self-assembled bis-and tetraporphyrin α, γ-cyclic octapeptide dimers[J]. Chem Eur J,2011,17(4):1220.
37 Wang Q, Chen Y, Ma P, et al. Morphology and chirality controlled self-assembled nanostructures of porphyrin-pentapeptide conjugate: Effect of the peptide secondary conformation[J]. J Mater Chem,2011,21(22):8057.
38 Biron E, Voyer N. Towards sequence selective DNA binding: Design, synthesis and DNA binding studies of novel bis-porphyrin peptidic nanostructures[J]. Org Biomol Chem,2008,6(14):2507.
39 Mezö G, Hérenyi L, Habdas J, et al. Syntheses and DNA binding of new cationic porphyrin-tetrapeptide conjugates[J]. Biophys Chem,2011,155(1):36.
40 Nuansing W, Georgilis E, De oliveira T V A G, et al. Electrospin- ning of tetraphenylporphyrin compounds into wires[J]. Particle Particle Syst Charact,2014,31(1):88.
41 Parayil S K, Lee J, Yoon M. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor[J]. Photochem Photobiol Sci,2013,12(5):798.
42 Bender G M, Lehmann A, Zou H, et al. De novo design of a single-chain diphenylporphyrin metalloprotein[J]. J Am Chem Soc,2007,129(35):10732.
43 Tao K, Jacoby G, Burlaka L, et al. Design of controllable bio-inspired chiroptic self-assemblies[J]. Biomacromolecules,2016, 17(9):2937.
44 Carvalho I M M, Ogawa M Y. Self-organization of porphyrin-peptide units by metal-mediated peptide assembly[J]. J Brazilian Chem Soc,2010,21(7):1390.
45 Liu K, Kang Y, Ma G, et al. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system[J]. Phys Chem Chem Phys,2016,18(25):16738.
46 Fry H C, Garcia J M, Medina M J, et al. Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays[J]. J Am Chem Soc,2012,134(36):14646.
47 Yu T, Lee O S, Schatz G C. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays[J].J Phys Chem A,2014,118(37):8553.
48 Kokona B, Kim A M, Roden R C, et al. Self assembly of coiled-coil peptide-porphyrin complexes[J]. Biomacromolecules,2009, 10(6):1454.
49 Pepe-mooney B J, Kokon B, Fairman R. Characterization of mesos- cale coiled-coil peptide-porphyrin complexes[J]. Biomacro molecules,2011,12(12):4196.
50 Kuciauskas D, Kiskis J, Caputo G A, et al. Exciton annihilation and energy transfer in self-assembled peptide-porphyrin complexes depends on peptide secondary structure[J].J Phys Chem B,2010,114(48):16029.
51 Wang Z, Medforth C J, Shelnutt J A. Porphyrin nanotubes by ionic self-assembly[J]. J Am Chem Soc,2004,126(49):15954.
52 Taggart J C, Welch E Z, Mulqueen M F, et al. Testing the role of charge and structure on the stability of peptide-porphyrin complexes[J]. Biomacromolecules,2014,15(12):4544.
53 Zaytsev D V, Xie F, Mukherjee M, et al. Nanometer to millimeter scale peptide-porphyrin materials[J]. Biomacromolecules,2010, 11(10):2602.
54 Zou Q, Zhang L, Yan X, et al. Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly[J]. Angew Chem In Ed,2014,53(9):2366.
55 Frischmann P D, MahaTA K, Wurthner F. Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies[J]. Chem Soc Rev,2013,42(4):1847.
56 Gilbert M, Albinsson B. Photoinduced charge and energy transfer in molecular wires[J]. Chem Soc Rev,2015,44(4):845.
57 Hasobe T. Porphyrin-based supramolecular nanoarchitectures for solar energy conversion[J].J Phys Chem Lett,2013,4(11):1771.
58 Jintoku H, Sagawa T, Miyamoto K, et al. Highly efficient and switchable electron-transfer system realised by peptide-assisted J-type assembly of porphyrin[J]. Chem Commun,2010,46(38):7208.
59 Hasobe T, Kamat P V, Troiani V, et al. Enhancement of light-ene-rgy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters[J].J Phys Chem B,2005,109(1):19.
60 Hasobe T, Imahori H, Kamat P V, et al. Quaternary self-organi- zation of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells[J]. J Am Chem Soc,2003,125(49):14962.
61 Uji H, Yatsunamiy, Kimury S. Anodic photocurrent generation by porphyrin-terminated helical peptide monolayers on gold[J].J Phys Chem C,2015,119(15):8054.
62 Kondo M, IidA K, Dewa T, et al. Photocurrent and electronic acti-vities of oriented-His-tagged photosynthetic light-harvesting/reaction center core complexes assembled onto a gold electrode[J]. Biomacromolecules,2012,13(2):432.
63 Kim J H, Lee M, Lee J S, et al. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis[J]. Angew Chem Int Ed,2012,51(2):517.
64 Dunetz J R, Sandstrom C, Young E R, et al. Self-assembling porphyrin-modified peptides[J]. Org Lett,2005,7(13):2559.
65 Sakamoto M, Ueno A, Mihara H. Multipeptide-metalloporphy rinassembly on a dendrimer template and photoinduced electron transfer based on the dendrimer structure[J]. Chem Eur J,2001,7(11):2449.
66 Orosz á, Mezö G, Herenyi L, et al. Binding of new cationic porphyrin-tetrapeptide conjugates to nucleoprotein complexes[J]. Biophys Chem,2013,177:14.
67 Bigey P, Sönnichsen S H, Meunier B, et al. DNA binding and clea-vage by a cationic manganese porphyrin-peptide nucleic acid conjugate[J]. Bioconjugate Chem,1997,8(3):267.
68 Charvátová J, Rusin O, Král V, et al. Novel porphyrin based receptors for saccharide recognition in water[J]. Sens Actuators B: Chem,2001,76(1):366.
69 Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy[J]. Chem Soc Rev,1995, 24(1):19.
70 Sibrian-vazquez M, Jensen T J, Vicente M G H. Synthesis, characterizationand metabolic stability of porphyrin-peptide conjugates bearing bifunctional signaling sequences[J]. J Med Chem,2008,51(10):2915.
71 Li H, Chan C F, Chan W L, et al. Monitoring and inhibition of Plk1: Amphiphilic porphyrin conjugated Plk1 specific peptides for its imaging and anti-tumor function[J]. Org Biomol Chem,2014,12(31):5876.
72 Wang J T W, Giuntini F, Eggleston I M, et al. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate[J]. J Controlled Release,2012,157(2):305.
73 Hirabayashi A, Shindo Y, Oka K, et al. Photodegradation of amyloid β and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives[J]. Chem Commun,2014,50(67):9543.
74 Li Y, Li X, Li Y, et al. Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: From multibilayer vesicles to hollow capsules[J]. Angew Chem Int Ed,2006,45(22):3639.
75 Henke P, Lang K, Kubat P, et al. Polystyrene nanofiber materials modified with an externally bound porphyrin photosensitizer[J]. ACS Appl Mater Interfaces,2013,5(9):3776.
76 Maisch T, Baier J, Franz B, et al. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria[J].PNAS,2007,104(17):7223.
77 Li Zhengyang, Tong Yue, Yao Wenbing. Evolution of anticancer mechanism of antimicrobial peptide[J]. Pharm Clinical Res,2010, 18(4):377(in Chinese).
李正洋,童玥,姚文兵. 抗菌肽的抗肿瘤研究进展[J]. 药学与临床研究,2010,18(4):377.
78 Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells[J]. Photochem Photobiol Sci,2015,14(7):1238.
79 Bryden F, Savoie H, Rosca E V, et al. PET/PDT theranostics:Synthesis and biological evaluation of a peptide-targeted gallium porphyrin[J]. Dalton Trans,2015,44(11):4925.
80 Dosselli R, Ruiz-gonzalez R, Moret F, et al. Synthesis, spectro- scopic, and photophysical characterization and photosensitizing acti-vity toward prokaryotic and eukaryotic cells of porphyrin-magainin and-buforin conjugates[J]. J Med Chem,2014,57(4):1403.
81 Asayama S, Kawamura E, Nagaoka S, et al. Design of manganese porphyrin modified with mitochondrial signal peptide for a new antioxidant[J]. Mol Pharm,2006,3(4):468.
82 Biesaga M, Orska J, Fiertek D, et al. Immobilized metal-ion affinity chromatography of peptides on metalloporphyrin stationary phases[J]. Fresenius′ J Anal Chem,1999,364(1-2):160.
83 Purrello R, Gurrieri S, Lauceri R. Porphyrin assemblies as chemical sensors[J]. Coordinat Chem Rev,1999,190:683.
84 Gurrieri S, Aliffi A, Bellacchio E, et al. Spectroscopic characteri-zation of porphyrin supramolecular aggregates on poly-lysine and their application to quantitative DNA determination[J]. Inorg Chim Acta,1999,286(2):121.
85 Long L, Jin J Y, Zhang Y, et al. Interactions between protein and porphyrin-containing cyclodextrin supramolecular system: A fluorescent sensing approach for albumin[J]. Analyst,2008,133(9):1201.
86 Chaloin L, Bigey P, Loup C, et al. Improvement of porphyrin cel- lular delivery and activity by conjugation to a carrier peptide[J]. Bioconjugate Chem,2001,12(5):691.
87 Zhang L, Yuan J, Liu M. Supramolecular chirality of achiral TPPS complexed with chiral molecular films[J].J Phys Chem B, 2003,107(46):12768.
88 Mammana A, D′urso A, Lauceri R, et al. Switching off and on the supramolecular chiral memory in porphyrin assemblies[J]. J Am Chem Soc,2007,129(26):8062.
[1] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[2] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[3] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[4] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[5] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[6] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[7] 段晶, 吴佳蕾, 林涛, 邵慧萍. 磁性功能支架用于骨组织工程的研究进展[J]. 材料导报, 2023, 37(10): 21100129-9.
[8] 孙志雅, 孟宇航, 杨华明. 黏土矿物基载药体系的研究进展[J]. 材料导报, 2022, 36(2): 20110152-10.
[9] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[10] 樊光娆, 苏海军, 郭敏, 张军, 高嘉亮, 郝宣成, 宋强, 刘林, 傅恒志. 生物陶瓷支架促进再生组织血管生成和骨生成的研究进展[J]. 材料导报, 2021, 35(1): 1096-1104.
[11] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[12] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[13] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[14] 石敏, 陶思洁, 李丹, 王鑫, 徐水, 朱勇. 面向组织工程应用的再生丝素/海藻酸钙海绵:制备、表征及体内、体外性能研究[J]. 材料导报, 2020, 34(4): 4158-4165.
[15] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed