Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 25010172-11    https://doi.org/10.11896/cldb.25010172
  无机非金属及其复合材料 |
高放废物处置库缓冲材料剪切特性研究进展
任卫欣1,2, 曹胜飞1,2,*, 戴文杰3, 谢敬礼1,2, 张奇1,2
1 核工业北京地质研究院,北京 100029
2 国家原子能机构高放废物地质处置创新中心,北京 100029
3 同济大学土木工程学院,上海 200092
Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories
REN Weixin1,2, CAO Shengfei1,2,*, DAI Wenjie3, XIE Jingli1,2, ZHANG Qi1,2
1 Beijing Research Institute of Uranium Geology, Beijing 100029, China
2 CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste, Beijing 100029, China
3 College of Civil Engineering, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 23552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高放废物深地质处置库中,工程屏障体系通常采用压实膨润土作为缓冲材料,其力学强度对处置库的稳定运行至关重要。本文全面回顾了压实膨润土的基本剪切特性,总结了近场条件下土体的剪切响应特征,阐述了近场环境对土体的作用机理,并概述了工程尺度压实膨润土剪切特性的初步探索。分析表明:压实膨润土在受剪过程中呈现重塑土的典型力学行为,表现出较一般黏性土更为复杂的应力-应变关系与变形特征;高温将引起土体应变显著降低,表现出应变降低失效与脆性失效的破坏形式;孔隙盐溶液浓度越高,压实膨润土的峰值强度、黏聚力、内摩擦角越大;在非饱和条件下,应力-应变关系受竖向荷载的影响,在同一吸力区间内表现出不同的曲线关系。目前鲜见多场耦合条件下压实膨润土剪切特性的研究。另外,随着我国高放废物深地质处置地下实验室的建设推进,缓冲材料的研发即将进入工程尺度阶段,尺寸因素造成的土体力学性能差异尚不明晰,亟需梳理总结后开展系统性研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任卫欣
曹胜飞
戴文杰
谢敬礼
张奇
关键词:  高放废物  膨润土  缓冲材料  剪切特性  近场环境  工程尺度    
Abstract: In the context of deep geological repositories for high-level radioactive waste (HLW), the engineered barrier system (EBS) commonly utilizes compacted bentonite as a buffer material. The mechanical strength of compacted bentonite is of paramount importance for the stable operation of the repository. This summary provided a comprehensive review of the fundamental shear characteristics of compacted bentonite, summarized the shear response of soil under near-field conditions, elucidated the mechanisms by which the near-field environment influences soil behavior, and presented an overview of the preliminary investigations into the shear characteristics of compacted bentonite at the engineering scale. The research findings reveal that compacted bentonite exhibits typical mechanical behavior of remolded soil during shear deformation, characterized by more complex stress-strain relationships and deformation characteristics compared to conventional cohesive soils. Elevated temperatures significantly reduce soil strain, resulting in failure modes associated with strain reduction and brittle behavior. The peak strength, cohesion, and internal friction angle of compacted bentonite increase with higher concentrations of pore saline solution. Under unsaturated conditions, the stress-strain relationship is influenced by vertical loading, leading to distinct curve relationships within the same suction range. Currently, there is a scarcity of research on the shear characteristics of compacted bentonite under coupled multi-field conditions. Moreover, with the ongoing development of China’s underground research laboratory for deep geological disposal of high-level radioactive waste, the research and development of buffer materials are poised to enter the engineering scale stage. The influence of size effects on the mechanical properties of soil remains unclear and necessitates systematic summarization and investigation.
Key words:  high-level radioactive waste    bentonite    buffer material    shear characteristics    near-field environment    engineering scale
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU432  
基金资助: 中国国家原子能机构核设施退役及放射性废物治理项目
通讯作者:  *曹胜飞,博士,核工业北京地质研究院正高级工程师、硕士研究生导师。目前主要从事高放废物地质处置缓冲材料等方面的研究。csf831016@163.com   
作者简介:  任卫欣,核工业北京地质研究院环境工程研究所硕士研究生,在曹胜飞正高级工程师的指导下开展高放废物地质处置缓冲材料的研究。
引用本文:    
任卫欣, 曹胜飞, 戴文杰, 谢敬礼, 张奇. 高放废物处置库缓冲材料剪切特性研究进展[J]. 材料导报, 2025, 39(23): 25010172-11.
REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories. Materials Reports, 2025, 39(23): 25010172-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010172  或          https://www.mater-rep.com/CN/Y2025/V39/I23/25010172
1 Wang J, Chen W M, Su R, et al. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4), 801 (in Chinese).
王驹, 陈伟明, 苏锐, 等. 岩石力学与工程学报, 2006, 25(4), 801.
2 Liu Y M, Chen Z R. Acta Mineralogica Sinica, 2001, 21(3), 541 (in Chinese).
刘月妙, 陈璋如. 矿物学报, 2001, 21(3), 541.
3 Börgesson L, Johannesson L E, Hernelind J. SKB Technical Report, 2004, TR-04-02.
4 Svensson D, Lundgren C, Johannesson L E, et al. SKB Technical Report, 2016, TR-16-14.
5 Chen H, Lv H B, Chen Z H. Chinese Journal of Geotechnical Engineering, 2018, 40(S1), 28 (in Chinese).
陈皓, 吕海波, 陈正汉. 岩土工程学报, 2018, 40(S1), 28.
6 Lin H Z, Li G X, Yu Y Z, et al. Rock and Soil Mechanics, 2007, 28(9), 1931 (in Chinese).
林鸿州, 李广信, 于玉贞, 等. 岩土力学, 2007, 28(9), 1931.
7 Zheng X J, Xu Y F. Chinese Journal of Geotechnical Engineering, 2021, 43(4), 783 (in Chinese).
郑新江, 徐永福. 岩土工程学报, 2021, 43(4), 783.
8 Chen W Q, Sedighi M, Curvalle F, et al. Chemical Engineering Journal, 2024, 481, 148647.
9 Bao Y, Su L, Chen J, et al. Engineering Geology, 2023, 319, 107108.
10 Kohler M, Hodel D, Keller L, et al. Engineering Geology, 2023, 323, 107243.
11 Zheng L G, Rutqvist J, Birkholzer J T, et al. Engineering Geology, 2015, 197, 278.
12 Guillaume D, Neaman A, Cathelineau M, et al. Clay Minerals, 2003, 38, 281.
13 Zhang S Q, Pei H F. Engineering Geology, 2021, 294, 106353.
14 Zhang L, Sun D A, Jia D. Applied Clay Science, 2016, 132-133, 24.
15 Elkady T Y, Al-Mahbashi A M. Environmental Earth Sciences, 2017, 76(14), 483.
16 Rao G, Sridharan A. Géotechnique, 1979, 29, 177.
17 Xu Y F. Engineering Geology, 2019, 251, 93.
18 Tuttolomondo A, Ferrari A, Laloui L. Canadian Geotechnical Journal, 2020, 58(11), 1627.
19 Dong X, Chen Y, Bao X, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(11), 4742.
20 Zhao N F, Ye W M, Wang Q, et al. Canadian Geotechnical Journal, 2020, 58(1), 142.
21 Dong X X, Chen Y G, Ye W M, et al. Applied Clay Science, 2020, 194, 105696.
22 Peng F, Sun D A, Yao Y P, et al. Applied Clay Science, 2024, 249, 107249.
23 Gao Y F, Liu Y M, Ma L K, et al. World Nuclear Geoscience, 2016, 33(1), 50 (in Chinese).
高玉峰, 刘月妙, 马利科, 等. 世界核地质科学, 2016, 33(1), 50.
24 Pintado X, Kumpulainen S, Romero E, et al. Geomechanics for Energy and the Environment, 2023, 34, 100468.
25 Ren G Y, Chen Q S, Zhu G P, et al. Non-Metallic Mines, 2009, 32(6), 67 (in Chinese).
任广元, 陈泉水, 朱国平, 等. 非金属矿, 2009, 32(6), 67.
26 Liu Y M, Cai M F, Wang J, et al. Uranium Geology, 2007, 23(2), 91 (in Chinese).
刘月妙, 蔡美峰, 王驹, 等. 铀矿地质, 2007, 23(2), 91.
27 Zhang L X, Wang H H, Zou R, et al. Materials Reports, 2023, 37(S2), 268 (in Chinese).
张麟熹, 王红海, 邹融, 等. 材料导报, 2023, 37(S2), 268.
28 Lv J, Zhao H, Zhang J Y, et al. Materials Reports, 2024, 38(7), 97 (in Chinese).
吕晶, 赵欢, 张金翼, 等. 材料导报, 2024, 38(7), 97.
29 Dueck A, Börgesson L, Johannesson L E. SKB Technical Report, 2010, TR-10-32.
30 Zheng X J, Li X Y, Xu Y F. Environmental Earth Sciences, 2022, 81(13), 352.
31 Peng P, Bao X H, Takagi K, et al. Engineering Geology, 2024, 341, 107726.
32 Chowdhury N, Ghasemi-Fare O. Construction and Building Materials, 2024, 438, 137223.
33 Suárez M, Lorenzo A, García-Vicente A, et al. Engineering Geology, 2022, 296, 106439.
34 Zhang Z, Cui Y J, Yang J W, et al. Construction and Building Materials, 2022, 345, 128319.
35 Wu Y X. Bulletin of the Chinese Academy of Geological Sciencse, 1991(2), 143 (in Chinese).
吴义祥. 中国地质科学学报, 1991(2), 143.
36 Monroy R, Zdravkovic L, Ridley A. Experimental Unsaturated Soil Mechanics, 2007, 6, 41.
37 Tan L R, Zhang M Y. Chinese Journal of Geotechnical Engineering, 1982, 4(2), 26 (in Chinese).
谭罗荣, 张梅英. 岩土工程学报, 1982, 4(2), 26.
38 Liu Y, Xiao S F, Wang Q. Journal of Tongji University, 2003, 31(11), 1295 (in Chinese).
刘莹, 肖树芳, 王清. 同济大学学报, 2003, 31(11), 1295.
39 Delage P, Lefebvre G. Canadian Geotechnical Journal, 1984, 21(1), 21.
40 Chen Y G, Dong X X, Zhang X D, et al. Engineering Geology, 2019, 255, 37.
41 Li K P, Chen Y G, Ye W M, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(3), 399 (in Chinese).
李昆鹏, 陈永贵, 叶为民, 等. 岩土工程学报, 2022, 44(3), 399.
42 Gao Y F, Liu Y M, Cao S F, et al. Journal of Water Resources and Architectural Engineering, 2023, 21(1), 61 (in Chinese).
高玉峰, 刘月妙, 曹胜飞, 等. 水利与建筑工程学报, 2023, 21(1), 61.
43 Li N N, Liu Y M. Atomic Energy Science and Technology, 2019, 53(12), 2344 (in Chinese).
李娜娜, 刘月妙. 原子能科学技术, 2019, 53(12), 2344.
44 Wang J, Chen L, Zhou Z C, et al. Atomic Energy Science and Technology, 2024, 58(S2), 217 (in Chinese).
王驹, 陈亮, 周志超, 等. 原子能科学技术, 2024, 58(S2), 217.
45 Ye W M, Chen Y G, Chen B, et al. Engineering Geology, 2010, 116(1), 12.
46 Dueck A. SKB Technical Report, 2010, TR-10-41.
47 Chen H, Lv H B, Chen Z H, et al. Advances in Civil Engineering, 2019, 2019(1), 1.
48 Yilmaz G. Scientific Research Essays, 2011, 6, 1928.
49 Wiebe B, Graham J, Tang G X, et al. Canadian Geotechnical Journal, 1998, 35(2), 194.
50 Tabiatnejad B, Siddiqua S, Siemens G. Environmental Earth Sciences, 2016, 75(22), 1434.
51 Di Maio C. Géotechnique, 1996, 46(4), 695.
52 Di Maio C, Scaringi G. Engineering Geology, 2016, 200, 1.
53 Kim J, Kumpulainen S, Ferrari A, et al. Applied Clay Science, 2024, 261, 107576.
54 Blatz J A, Graham J, Chandler N A. Canadian Geotechnical Journal, 2002, 39(5), 1005.
55 Zhang M, Xie J L. Acta Petrologica et Mineralogica, 2021, 40(4), 778 (in Chinese).
张明, 谢敬礼. 岩石矿物学杂志, 2021, 40(4), 778.
56 Mitchell J K. Soil Science Society of America Journal, 1976, 40(4), 827.
57 Moritz L. Swedish Geotechnical Institute Technical Report, 1995, SGI-R-95-47.
58 Wang M C, Benway J M, Arayssi A M, et al. In:Physico-Chemical Aspects of Soil and Related Materials、ASTM International, USA, 1990.
59 Chang C, Borglin S, Chou C W, et al. Applied Clay Science, 2023, 232, 106792.
60 Tan Y Z, Li H, Wang P R, et al. Journal of Testing Evaluation, 2021, 49, 20190570.
61 Dueck A, Börgesson L. Engineering Geology, 2015, 193, 305.
62 Liu J P, Zhang T F, Sun Y W, et al. Chemical Engineering Journal, 2022, 445, 136680.
63 Romero E, Villar M V, Lloret A. Engineering Geology, 2005, 81(3), 255.
64 Zeng Z T, Shao J S, Sun D A, et al. Engineering Geology, 2022, 308, 106822.
65 Dumont M, Taibi S, Fleureau J M, et al. Comptes Rendus-Géoscience, 2012, 342(12), 892.
66 Liu Z R, Ye W M, Cui Y J, et al. Applied Clay Science, 2022, 222, 106492.
67 Liu W, Liang D, Yang Z T, et al. New Chemical Materials, 2018, 46(S1), 43 (in Chinese).
刘伟, 梁栋, 杨仲田, 等. 化工新型材料, 2018, 46(S1), 43.
68 Chowdhury N, Ghasemi-Fare O. Engineering Geology, 2024, 342, 107737.
69 Wersin P, Johnson L H, Mckinley I G. Physics and Chemistry of the Earth, 2007, 32(8), 780.
70 Andersson K, Torstenfelt B, Rydberg J. SKB Technical Report, 1979, TR-79-26.
71 Pitkänen P, Snellman M, Vuorinen U. Posiva, 1996, POSIVA-96-04.
72 Japan N C. Knowledge Management Report, 2005.
73 Gaucher É C, Blanc P, Bardot F, et al. Comptes Rendus Geoscience, 2006, 338(12), 917.
74 Pearson F J, Tournassat C, Gaucher E C. Applied Geochemistry, 2011, 26(6), 990.
75 He Y, Ye W M, Chen Y G, et al. Engineering Geology, 2019, 249, 241.
76 Song Z Y, Zhang Z H, Du X L. International Journal of Geomechanics, 2024, 24(3), 04024004.
77 Xiang G S, Ye W M, Jalal F E, et al. Engineering Geology, 2022, 298(5), 106537.
78 Sinnathamby G, Korkiala-Tanttu L, Salvador L T. Applied Clay Science, 2015, 104, 211.
79 Börgesson L, Karnland O, Johannesson L E. Engineering Geology, 1996, 41(1), 127.
80 Yao C Q, Wei C F, Ma T T. Rock and Soil Mechanics, 2017, 38(S2), 7 (in Chinese).
姚传芹, 韦昌富, 马田田, 等. 岩土力学, 2017, 38(S2), 7.
81 Sun Z, Chen Y G, Ye W M, et al. Engineering Geology, 2020, 279, 105891.
82 Zhao N F, Ye W M, Chen B, et al. Engineering Geology, 2019, 259, 105204.
83 García-Siñeriz J L, Villar M V, Rey M, et al. Engineering Geology, 2015, 192, 33.
84 Li M Y, Sun W J, Huang Q, et al. Rock and Soil Mechanics, 2022, 43(10), 2717 (in Chinese).
李明玉, 孙文静, 黄强, 等. 岩土力学, 2022, 43(10), 2717.
85 Alonso E E, Pinyol N M, Gens A. Géotechnique, 2013, 63(6), 463.
86 Zhou A N, Huang R Q, Sheng D C. Canadian Geotechnical Journal, 2016, 53, 157611.
87 Han Z, Vanapalli S K. Géotechnique, 2016, 66(8), 627.
88 Qin B, Li X A, Wang L, et al. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(11), 2846 (in Chinese).
秦彪, 李喜安, 王力, 等. 岩石力学与工程学报, 2024, 43(11), 2846.
89 White N F, Duke H R, Sunada D K, et al. Journal of the Irrigation and Drainage Division, 1970, 96(2), 165.
90 Bennett D G, Gens R. Journal of Nuclear Materials, 2008, 379(1), 1.
91 Ureña C, Azañón J M, Corpas F, et al. Construction and Building Materials, 2013, 45, 289.
92 Hernelind J. SKB Technical Report, 2006, TR-06-87.
93 Börgesson L, Hernelind J. SKB Technical Report, 2006, TR-06-43.
94 Börgesson L, Hernelind J. SKB Technical Report, 2010, TR-10-33.
95 Cao S F, Liu Y M, Xie J L, et al. Chinese Journal of Geotechnical Engineering, 2023, 45(11), 2411 (in Chinese).
曹胜飞, 刘月妙, 谢敬礼, 等. 岩土工程学报, 2023, 45(11), 2411.
96 Lu Y, Ye W M, Wang Q, et al. Engineering Geology, 2024, 342, 107743.
97 Qin Z Y, Sun D A, Zhou X Y, et al. Journal of Shanghai University (Natural Science Edition), 2022, 28(4), 668 (in Chinese).
秦臻宇, 孙德安, 周祥运, 等. 上海大学学报(自然科学版), 2022, 28(4), 668.
98 Xie J, Yang X, Feng X, et al. World Nuclear Geoscience, 2023, 40(S1), 580 (in Chinese).
谢敬礼, 杨学文, 冯旭, 等. 世界核地质科学, 2023, 40(S1), 580.
99 Cao S F, Liu Y M, Xie J L, et al. World Nuclear Geoscience, 2023, 40(1), 58 (in Chinese).
曹胜飞, 刘月妙, 谢敬礼, 等. 世界核地质科学, 2023, 40(1), 58.
100 Liu Y M, Wang J, Cao S F, et al. Rock and Soil Mechanics, 2013, 34(10), 2756 (in Chinese).
刘月妙, 王驹, 曹胜飞, 等. 岩土力学, 2013, 34(10), 2756.
[1] 游庆龙, 熊秘, 陈世业, 黄之懿, 黄文旭, 赵胜前, 程明, 蒋勇. 基于Mohr-Coulomb和Drucker-Prager模型的黄土剪切特性研究[J]. 材料导报, 2025, 39(19): 24070047-6.
[2] 林海, 时花豹, 周创兵, 吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090001-6.
[3] 张理元, 李燕, 税亿, 张菁菁, 吴娜, 阳金菊. 膨润土改性偏钛酸型钛锂离子筛及吸附性能研究[J]. 材料导报, 2023, 37(19): 22030244-7.
[4] 李秀英, 肖卓豪, 陶歆月, 汪永清, 杨柯, 石纪军, 邓波. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.
[5] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[6] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[7] 梅源, 田新宇, 胡长明, 刘建国, 杨云飞, 朱军. 膨润土改性砂土工程性质及其在盾构施工中的应用[J]. 材料导报, 2020, 34(14): 14087-14092.
[8] 王毓, 赵君, 任俊鹏, 李本秀, 周进康, 李小平. 温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征[J]. 材料导报, 2020, 34(12): 12178-12184.
[9] 张超凡, 管学茂, 张海波, 勾密峰, 胡恩立, 王恒. 机械力化学改性钙基膨润土提高注浆材料的稳定性[J]. 材料导报, 2019, 33(20): 3408-3412.
[10] 白静静, 李海艳, 史才军, 管学茂, 向顺成. 硫铝酸盐水泥用抗泥型聚羧酸减水剂的制备及性能[J]. 《材料导报》期刊社, 2018, 32(14): 2384-2389.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed