Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 25010095-6    https://doi.org/10.11896/cldb.25010095
  无机非金属及其复合材料 |
数值极限分析法确定黏性土地基承载力系数方法研究
郑颖人1,2, 杨莹明2, 刘元雪1,*, 阿比尔的2, 汤德颖2
1 联勤保障部队工程大学勤务设施系,重庆 401331
2 重庆交通大学河海学院,重庆 400074
A Practical Method for Determining Bearing Capacity Coefficient of Cohesive Soil Strip Foundation by Numerical Limit Analysis
ZHENG Yingren1,2, YANG Yingming2, LIU Yuanxue1,*, ABI Erdi2, TANG Deying2
1 Department of Service Facilities, The Engineering University of the Joint Logistic Support Force, Chongqing 401311, China
2 College of River and Ocean, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 8450KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统极限分析法计算条形荷载下的地基极限承载力时只有经验公式,难以精确求出有重土地基的极限承载力,特别是黏性土地基承载力系数计算误差较大。为了能够准确地计算黏性土条形基础地基的极限承载力,建立基础宽度B为3.2~6 m的黏性土地基承载力系数计算分析模型,结合荷载增量法计算了黏性土地基承载力系数Nγ。计算结果表明:基于荷载增量法计算的地基承载力系数Nγ与PLAXIS软件采用极限应变法的计算结果误差为0.95%,计算结果较为可靠;与基础宽度B为1~3 m的计算结果对比分析发现,B=3.2~6 m时计算结果云图的破坏面明显,而B=1~3 m时破坏面不明显;B=3.2~6 m时,采用传统经验公式计算的承载力pu2pu的计算误差较B=1~3 m有大幅增加,传统经验公式无法准确求得B=3.2~6 m时的地基承载力系数Nγ。最后基于本工作的计算结果给出了黏性土条形地基承载力系数Nγ与基础宽度B、摩擦角φ的图解表述,为黏性土地基承载力计算提供参数指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑颖人
杨莹明
刘元雪
阿比尔的
汤德颖
关键词:  黏性土地基  条形基础  地基极限承载力  荷载增量法  极限应变法    
Abstract: Traditional limit analysis methods for calculating the ultimate bearing capacity of foundations under strip loads rely solely on empirical formulas, making it difficult to obtain precise solutions for ultimate bearing capacity of a foundation with heavy soil, especially for cohesive soil foundations, where the calculation error in bearing capacity coefficients is relatively large. In order to accurately calculate the ultimate bearing capacity of cohesive soil strip foundations, a calculation and analysis model for the bearing capacity coefficients of cohesive soil foundations with a foundation width B ranging from 3.2 to 6 meters was established. The bearing capacity coefficient Nγ of cohesive soil was calculated using the load increment method. The results show that the bearing capacity coefficient Nγ calculated based on the load increment method has an error of 0.95% compared to the results obtained using PLAXIS software with the limit strain method, indicating a relatively reliable calculation. A comparative analysis with the results for foundation width B ranging from 1 to 3 meters reveals that the failure surface is distinct in the calculation results for B=3.2—6.0 m, whereas it is not distinct for B=1—3 m. When B=3.2—6 m, the calculation errors for the bearing capacity pu2, pu using traditional empirical formulas are significantly larger than for B=1—3 m, indicating that traditional empirical formulas cannot accurately determine the bearing capacity coefficient Nγ for B=3.2—6 m. Finally, based on the calculation results, a graphical representation of the bearing capacity coefficient Nγ of cohesive soil strip foundations in relation to foundation width B and friction angle φ was provided, offering parametric guidance for the calculation of bearing capacity in cohesive soil foundations.
Key words:  sticky soil foundation    foundation bearing capacity coefficient    load increment method    limit strain method    practical method
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU47  
基金资助: 重庆市自然科学基金院士专项(cstc2021yszx-jcyjX0002);重庆市级人才计划项目(cstc2024ycjh-bgzxm0028)
通讯作者:  *刘元雪,博士,教授,博士研究生导师,主要从事岩土本构关系与地下工程稳定性、结构防护领域的研究。lyuanxue@vip.sina.com   
作者简介:  郑颖人,中国工程院院士,教授,主要从事隧道力学、岩土塑性力学、地下工程、边坡工程与区域性土研究。
引用本文:    
郑颖人, 杨莹明, 刘元雪, 阿比尔的, 汤德颖. 数值极限分析法确定黏性土地基承载力系数方法研究[J]. 材料导报, 2025, 39(21): 25010095-6.
ZHENG Yingren, YANG Yingming, LIU Yuanxue, ABI Erdi, TANG Deying. A Practical Method for Determining Bearing Capacity Coefficient of Cohesive Soil Strip Foundation by Numerical Limit Analysis. Materials Reports, 2025, 39(21): 25010095-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010095  或          https://www.mater-rep.com/CN/Y2025/V39/I21/25010095
1 Karl Terzaghi. Theoretical soil mechanics, Wiley, New York, 1943, pp. 265.
2 Yang F, Ci X H, Gao Y K, et al. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4), 1031(in Chinese).
杨峰, 慈新航, 高益康, 等. 岩石力学与工程学报, 2023, 42(4), 1031.
3 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021-2001, China Architecture & Building Press, China, 2009, pp. 45 (in Chinese).
中华人民共和国建设部. 岩土工程勘察规范: GB 50021-2001, 中国建筑工业出版社, 2009, pp. 45.
4 Minstry of Transport of the People’s Republic of China. Code for design of ground base and foundation of highway bridges and culverts: JTG D63-2007. China Communication Press, China, 2007, pp. 34(in Chinese).
中华人民共和国交通运输部. 公路桥涵地基与基础设计规范: JTG D63-2007, 人民交通出版社, 2007, pp. 34.
5 Zienkiewicz O C, Humpheson C, Lewis R W. Geotechnique, 1975, 25(4), 671.
6 Zhao S Y, Zheng Y R, Shi W M, et al. Chinese Journal of Geotechnical Engineering, 2002, 24(3), 343(in Chinese).
赵尚毅, 郑颖人, 时卫民, 等. 岩土工程学报, 2002, 24(3), 343.
7 Zheng Y R, Kong L, Abi E D. Strength theory and numerical limit analysi, Science Press, China, 2020, pp. 44 (in Chinese).
郑颖人, 孔 亮, 阿比尔的. 强度理论与数值极限分析, 科学出版社, 2020, pp. 44.
8 Abi E D, Feng X T, Zheng Y R, et al. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8), 1552(in Chinese).
阿比尔的, 冯夏庭, 郑颖人, 等. 岩石力学与工程学报, 2015, 34(8), 1552.
9 Yang J Q, Sun X, Cui X D. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9), 1923(in Chinese).
杨继强, 孙昕, 崔向东. 岩石力学与工程学报, 2021, 40(9), 1923.
10 Chen Y L, Wang S Y, Li H, et al. Materials Reports, 2024, 38(24), 171(in Chinese).
陈宇良, 王双翼, 李洪, 等. 材料导报, 2024, 38(24), 171.
11 Ding X Xiao X C, Wu D, et al. Materials Reports, 2021, 35(18), 18096(in Chinese).
丁鑫, 肖晓春, 吴迪, 等. 材料导报, 2021, 35(18), 18096.
12 Yang H H, Yang W, Liu H L, et al. Materials Reports, 2023, 37(13), 137(in Chinese).
杨海华, 杨武, 刘汉龙, 等. 材料导报, 2023, 37(13), 137.
13 Feng S, Zheng Y R, Gao H. Rock and Soil Mechanics, 2024, 45(10), 2919(in Chinese).
冯嵩, 郑颖人, 高红. 岩土力学, 2024, 45(10), 2919.
14 Li A Q, Wang T C. Principles of concrete structure design (6th edition), China Architecture and Building Press, China, 2016, pp. 16(in Chinese).
李爱群, 王铁成. 混凝土结构设计原理(第六版), 中国建筑工业出版社, 2016, pp. 16.
15 Lin C Y, Wang Q R, Yang L Y, et al. Materials Reports, 2022, 36(19), 103(in Chinese).
林长宇, 王启睿, 杨立云, 等. 材料导报, 2022, 36(19), 103.
16 Vesic A S. Journal of the Soil Mechanics and Foundations Division, 1973, 99(1), 45.
17 Chen W F. Limit analysis and soil plasticity, Elsevier, Amsterdam, 1975, pp. 30.
[1] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[2] 王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
[3] 周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
[4] 李建东, 张延杰, 王旭, 蒋代军, 王兴为. 新型固化剂加固膨胀土研究现状及展望[J]. 材料导报, 2023, 37(5): 21030148-11.
[5] 井德胜, 白晓宇, 冯志威, 张明义, 李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究[J]. 材料导报, 2021, 35(19): 19223-19229.
[6] 王景龙, 王旭, 李建东, 张延杰, 蒋代军, 刘德仁, 李迅. F1离子固化剂加固试验黄土的物理力学特性变化机理[J]. 材料导报, 2021, 35(8): 8070-8075.
[7] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 王景龙, Steven. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106.
[8] 方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
[9] 郑晨, 白晓宇, 张明义, 王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展[J]. 材料导报, 2020, 34(13): 13194-13020.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed