Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120046-7    https://doi.org/10.11896/cldb.24120046
  金属与金属基复合材料 |
钛铝合金激光填丝修复裂纹机理分析
李欢欢1, 王善林1,*, 陈玉华1, 宋石平2, 涂文斌1
1 南昌航空大学航空构件成形与连接江西省重点实验室,南昌 330063
2 中国航发湖南动力机械研究所,湖南 株洲 412002
Analysis of Crack Repair Mechanisms in TiAl Alloy via Laser Wire Feeding
LI Huanhuan1, WANG Shanlin1,*, CHEN Yuhua1, SONG Shiping2, TU Wenbin1
1 Jiangxi Provincial Key Laboratory of Aviation Component Forming and Connection, Nanchang Hangkong University, Nanchang 330063, China
2 China Aviation Hunan Power Machinery Research Institute, Zhuzhou 412002, Hunan, China
下载:  全 文 ( PDF ) ( 49521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用激光填丝修复技术对Ti-48Al-2Nb-2Cr合金进行修复,分析了TiAl合金激光填丝修复表面成形和显微组织演变规律。结果表明,除热影响区及熔合线附近有少量微裂纹外,中心区域成形良好。修复层中心主要是针状α马氏体组织,平均晶粒尺寸约为26 μm,小于母材Ti-48Al-2Nb-2Cr合金的晶粒平均尺寸(50 μm);结合区由α相和γ相组成,平均晶粒尺寸为42 μm。中心区平均硬度为510HV,远高于基体区硬度(325HV)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欢欢
王善林
陈玉华
宋石平
涂文斌
关键词:  激光填丝修复  修复层成形  组织转变  显微硬度    
Abstract: Ti-48Al-2Nb-2Cr alloy was repaired by laser wire feeding technology. The surface forming and microstructure evolution of TiAl alloy repaired by laser wire feeding were analyzed. The results show that except for a small amount of micro-cracks in the heat affected zone near the root of the repair layer, the central area of the repair layer is well formed. The center of the repair layer is mainly acicular α′ martensite, and the average grain size is about 26 μm, which is smaller than the average size of the base metal Ti-48Al-2Nb-2Cr alloy of 50 μm. The bonding zone is composed of α phase and γ phase, and the average grain size is 42 μm. The average hardness of the central area of the repair layer is 510HV, which is much higher than the base metal with hardness of 325HV.
Key words:  laser wire feeding repair    repair layer forming    structure transformation    micro hardness
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TG456.7  
基金资助: 国家自然科学基金(52475363;52175326);江西省科技计划项目(20212AEI91004);江西省高层次高技能领军人才培养工程;江西省自然科学基金(20232ACB204020)
通讯作者:  *王善林,南昌航空大学材料科学与工程学院教授。目前主要从事特种连接技术、电子封装技术等方面的研究。slwang70518@nchu.edu.cn   
作者简介:  李欢欢,南昌航空大学材料科学与工程学院硕士研究生,在王善林教授的指导下进行研究。主要研究领域为金属材料的高能束流连接。
引用本文:    
李欢欢, 王善林, 陈玉华, 宋石平, 涂文斌. 钛铝合金激光填丝修复裂纹机理分析[J]. 材料导报, 2025, 39(24): 24120046-7.
LI Huanhuan, WANG Shanlin, CHEN Yuhua, SONG Shiping, TU Wenbin. Analysis of Crack Repair Mechanisms in TiAl Alloy via Laser Wire Feeding. Materials Reports, 2025, 39(24): 24120046-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120046  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120046
1 Liu D X, Jin J, Peng Y M, et al. Journal of Aerospace Power, 2008, 23(6), 976.
2 Gohardani A S, Doulgeris G, Singh R. Progress in Aerospace Sciences, 2011, 47(5), 369.
3 Luongo C A, Masson P J, Nam T, et al. IEEE Transactions on Applied Superconductivity, 2009, 19(3), 1055.
4 Klocke F, Klink A, Veselovac D, et al. CIRP Annals, 2014, 63(2), 703.
5 Zhu D, Xu Z, et al. Chinese Journal of Aeronautics, 2013, 26(4), 1064.
6 Wu C, Zhang S P, Guo H M, et al. Gas Turbine Experiment and Research, 2023, 36(4), 55(in Chinese).
吴晨, 张少平, 郭会明, 等. 燃气涡轮试验与研究, 2023, 36(4), 55.
7 Babu R P, Karthikeyan S. Materials Science and Engineering, 2013, A564, 218.
8 Schwerdtfeger J, Carolin K. Intermetallics, 2014, 49(3), 29.
9 Baudana G, Biamino S, Kloden B, et al. Intermetallics, 2016, 73, 43.
10 Du Y J, Shen J, Xiong Y, et al. Intermetallics, 2015, 61, 80.
11 Chen Y, Yue H, Wang X, et al. Materials Characterization, 2018, 142, 584.
12 Jiang H R, Du Y L, Sun S J, et al. Gas Turbine Experiment and Research, 2025, 38(1), 1(in Chinese).
姜海瑞, 杜云玲, 孙士杰, 等. 燃气涡轮试验与研究, 2025, 38(1),1.
13 Cho K, Kobayashi R, Oh J Y, et al. Intermetallics, 2018, 95, 1.
14 Mario F A, Viola L A. High Temperature Materials and Processes, 2004, 23(1), 25.
15 Wang G, Yang Y, Wu P, et al. Journal of Manufacturing Processes, 2019, 46, 170.
16 Tavoosi M, Arjmands. Surfaces & Interfaces, 2017, 8, 1.
17 Tian X J, Zhang S Q, Li A, et al. Materials Science and Engineering A, 2010, 527(7-8), 1821.
18 Bamberg J, Dusel K H, Satzger W. AIP Conference Proceedings, 2015, 1650(1), 156.
19 Marchesi T R, Lahuerta R D, Silva E C N, et al. IFAC Papers Online, 2015, 48(3), 2333.
20 Liu Y S, Han P L, Hu S F, et al. Aeronautical Manufacturing Technology, 2014, 57(10), 62(in Chinese).
刘业胜, 韩品连, 胡寿丰, 等. 航空制造技术, 2014, 57(10), 62.
21 Song W Q, Li X G, Qu S, et al. MW Metal Forming, 2016(2), 44(in Chinese).
宋文清, 李晓光, 曲伸, 等. 金属加工(热加工), 2016(2), 44.
22 Zhang W, Yao J H. Applied Laser, 2004, 24(6), 342(in Chinese).
张伟, 姚建华. 应用激光, 2004, 24(6), 342.
23 Yang Q, Zhang P, He Z T, et al. Applied Laser, 2020, 40(1), 13(in Chinese).
杨权, 章鹏, 何宗泰, 等. 应用激光, 2020, 40(1), 13.
24 Yang Z, Liu N, Fan X F, et al. Applied Laser, 2020, 40(1), 22(in Chinese).
杨振, 柳宁, 樊湘芳, 等. 应用激光, 2020, 40(1), 22.
25 Yang S, Chang B H, Xing B, et al. Transactions of the China Welding Institution, 2018, 39(3), 31.
26 Yu M, Wang J Z, Wang S H, et al. Powder Metallurgy Industry, 2024, 34(6), 120.
27 Alcisto J, Enriquez A, Garcia H, et al. Journal of Materials Engineering and Performance, 2011, 20(2), 203.
28 Seifi M, Salem A A, Satko D P, et al. Journal of Alloys and Compounds, 2017, 729, 1118.
29 Yue H Y, Yao Y X, Yang J B, et al. Journal of Jiangsu University of Science and Technology, 2022, 36(2), 22(in Chinese).
岳航宇, 尧有行, 杨济邦, 等. 江苏科技大学学报, 2022, 36(2), 22.
30 Yue H Y, Peng H, Li R F, et al. Materials Science and Engineering A, 2021, 803, 140473.
31 Wang L, Shen C, Zhang Y L, et al. Materials Characterization, 2022, 193, 112321.
32 Akman E, Demir A, Canel T, et al. Journal of Materials Processing Technology, 2009, 209(8), 3705.
33 Cai X L, Li H M, Ji B K, et al. Optics & Laser Technology, 2022, 146, 107575.
[1] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[2] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[3] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[4] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[5] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[6] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[7] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[8] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[9] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[10] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[11] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[12] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[13] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[14] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[15] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed