Effect of Residual Element Cu on the High Temperature Oxidation Behavior of 82B High-carbon Steel for Prestressed Steel Strands
LI Jincheng1,2, DONG Shuaijun1,3, ZHANG Chaolei1,3,*, LI Na4, WANG Yifei1,3, WU Yongjin1,3
1 Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China 2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 3 Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China 4 HBIS Group Zhangxuan Technology, Xuanhua 075100, Hebei, China
Abstract: By means of thermogravimetric analysis, high-temperature oxidation experiments, characterization of the elemental occurrence states and determination of the oxide skin density, a comparative analysis of the high-temperature oxidation behavior of 82B high-carbon steels were investigated at 900 ℃ to 1 100 ℃, there were two kinds of steel used in the test, one is 82B high-carbon steel containing 0.08%Cu produced by a short process using scrap steel as the raw material, and the orther is 82B high-carbon steel containing 0.02%Cu produced by a traditional long process. The influence of the residual element Cu on the high temperature oxidation behavior was studied. The results show that Cu can reduce the oxidation rate. After 1 hour at 900 ℃ and 1 000 ℃, Cu tends to aggregate at the grain boundaries of the substrate surface and between the oxide scale and the substrate interface, while at 1 100 ℃, Cu is dispersed in the oxide scale. As the temperature increases, the flatness of the interface between the oxide scale and the substrate decreases, and the FeCr2O4 and Fe2SiO4 oxide films formed by Cr and Si elements at the interface become loose, providing convenience for Cu diffusion into the oxide scale and increasing the difficulty of removing of the oxide scale.
李锦程, 董帅君, 张朝磊, 李娜, 王艺霏, 吴咏锦. 残余元素Cu对预应力钢绞线用82B高碳钢高温氧化行为的影响[J]. 材料导报, 2025, 39(12): 24100160-6.
LI Jincheng, DONG Shuaijun, ZHANG Chaolei, LI Na, WANG Yifei, WU Yongjin. Effect of Residual Element Cu on the High Temperature Oxidation Behavior of 82B High-carbon Steel for Prestressed Steel Strands. Materials Reports, 2025, 39(12): 24100160-6.
1 Wei F C, Zhang T, Xu L, et al. Materials Research Express, 2019, 6, 106507. 2 Wang J, Mu J, Wan S, et al. Progress in Natural Science:Materials International, 2023, 33, 718. 3 Lyu M, Mi X Y, Zhang Z H, et al. Chinese Journal of Engineering, 2020, 42(1), 102 (in Chinese). 吕明, 米小雨, 张朝晖, 等. 工程科学学报, 2020, 42(1), 102. 4 Wei H, Chen Y L, Su L, et al. Materials Research Express, 2018, 5, 086506. 5 Wang N T, Chen J L, Wang L J, et al. Special Steel, 2023, 44(3), 114 (in Chinese). 王宁涛, 陈继林, 王利军, 等. 特殊钢, 2023, 44(3), 114. 6 Wang H, Huang B C, Cao G M, et al. Journal of Central South University, 2023, 54(1), 53 (in Chinese). 王皓, 黄标彩, 曹光明, 等. 中南大学学报, 2023, 54(1), 53. 7 Yang C F, Su H, Li L, et al. Iron & Steel, 2007, 42(4), 57 (in Chinese). 杨才福, 苏航, 李丽, 等. 钢铁, 2007, 42(4), 57. 8 Xin W B, Song B, Hu C L, et al. Chinese Journal of Engineering, 2015, 37(3), 317 (in Chinese). 辛文彬, 宋波, 胡春林, 等. 工程科学学报, 2015, 37(3), 317. 9 Raabe D, Joviević-Klug M, Ponge D, et al. Annual Review of Materials Science, 2024, 54, 247. 10 Wang J Y, Yi G W, Wang S H, et al. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5), 948 (in Chinese). 王军阳, 易戈文, 万善宏, 等. 中国腐蚀与防护学报, 2023, 43(5), 948. 11 Yin L, Sridhar S. Metallurgical and Materials Transactions B, 2010, 41, 1095. 12 Li Z F, He Y Q, Cao G M, et al. Materials Reports, 2018, 32(2), 259 (in Chinese). 李志峰, 何永全, 曹光明, 等. 材料导报, 2018, 32(2), 259. 13 Wang L, Dong J H, Han D, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(6), 545 (in Chinese). 王雷, 董俊华, 韩达, 等. 中国腐蚀与防护学报, 2020, 40(6), 545. 14 Panasiuk D, Daigo I, Hoshino T, et al. Journal of Industrial Ecology, 2022, 26, 1040. 15 Zou D, Zhou Y, Zhang X, et al. Materials Characterization, 2018, 136, 435. 16 Zhao G, Zhang J, Li J, et al. Journal of Iron and Steel Research International, 2022, 29, 281. 17 Kondo Y, Tanei H. Iron and Steel Institute of Japan International, 2015, 55, 1044. 18 Hariharan K, Feng L, Kadirvel K, et al. Corrosion Science, 2024, 233, 112090. 19 Rizzi M, Guerrini E, Trasatti S P, Metallurgia Italiana, 2012, 104, 29. 20 Webler B, Yin L, Sridhar S. Metallurgical and Materials Transactions B, 2008, 39, 725. 21 Sun B, He Y Q, Liu Z Y, et al. Materials Reports, 2016, 30(16), 100 (in Chinese). 孙彬, 何永全, 刘振宇, 等. 材料导报, 2016, 30(16), 100. 22 Wang C, Wu H, Li Z, et al. Metals, 2021, 11, 312. 23 Arreola-Villa S A, Vergara-Hernández H J, Solorio-Diáz G, et al. Metals, 2022, 12, 147. 24 Sun B, Gao S L, Hao M X, et al. Materials Reports, 2023, 37(4), 145 (in Chinese). 孙彬, 高圣伦, 郝明欣, 等. 材料导报, 2023, 37(4), 145. 25 Ma T, Li H R, Gao J X, et al. Chinese Journal of Materials Research, 2019, 33(3), 225 (in Chinese). 马涛, 李慧蓉, 高建新, 等. 材料研究学报, 2019, 33(3), 225. 26 Zhang S, Li H, Jiang Z, et al. Journal of Materials Science & Technology, 2022, 115, 103. 27 Tu Y W, Zhu L H. Transactions of Materials and Heat Treatment, 2022, 43(12), 125 (in Chinese). 涂有旺, 朱丽慧. 材料热处理学报, 2022, 43(12), 125. 28 Sun B, Hao M X, You H G, et al. Materials Reports, 2020, 34(16), 16131 (in Chinese). 孙彬, 郝明欣, 尤宏广, 等. 材料导报, 2020, 34(16), 16131. 29 Yu X L, Jiang Z Y, Yang D J, et al. Advanced Materials Research, 2012, 572, 249. 30 Wu Q L, Zhang Z H, Dong X M, et al. Corrosion Science, 2013, 75, 400. 31 Pan T, Zhao L, Chai X Y, et al. Materials Reports, 2023, 37(19), 180 (in Chinese). 潘涛, 赵蕾, 柴希阳, 等. 材料导报, 2023, 37(19), 180. 32 Shizukawa Y, Hayashi S, Yoneda S, et al. Oxidation of Metals, 2016, 86, 315. 33 Gaiser G, Krobath R, Presoly P, et al. Journal of Materials Research and Technology, 2023, 26, 9276. 34 Shen Z, Chen K, Yu H, et al. Acta Materialia, 2020, 194, 522.