Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24100160-6    https://doi.org/10.11896/cldb.24100160
  金属与金属基复合材料 |
残余元素Cu对预应力钢绞线用82B高碳钢高温氧化行为的影响
李锦程1,2, 董帅君1,3, 张朝磊1,3,*, 李娜4, 王艺霏1,3, 吴咏锦1,3
1 北京科技大学碳中和研究院,北京 100083
2 北京科技大学材料科学与工程学院,北京 100083
3 辽宁材料实验室钢铁再生技术研究所,沈阳 110167
4 河钢集团张宣科技有限公司,河北 宣化 075100
Effect of Residual Element Cu on the High Temperature Oxidation Behavior of 82B High-carbon Steel for Prestressed Steel Strands
LI Jincheng1,2, DONG Shuaijun1,3, ZHANG Chaolei1,3,*, LI Na4, WANG Yifei1,3, WU Yongjin1,3
1 Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
4 HBIS Group Zhangxuan Technology, Xuanhua 075100, Hebei, China
下载:  全 文 ( PDF ) ( 28732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过热重分析、高温氧化实验、元素赋存状态表征和氧化铁皮致密度测定,对比分析以废钢为原料短流程生产含0.08%Cu与传统长流程生产含0.02%Cu的82B高碳钢在900~1 100 ℃下的高温氧化行为,研究残余元素Cu对高温氧化行为的影响。结果表明:Cu会降低氧化速率,900 ℃与1 000 ℃下保温1 h后Cu偏聚在基体表面晶界处以及氧化铁皮/基体界面间,1 100 ℃时Cu则弥散分布在氧化铁皮中;随着温度升高氧化铁皮/基体界面的平直度降低,并且Cr、Si元素在界面形成的FeCr2O4和Fe2SiO4氧化膜变得不致密,为Cu向氧化铁皮中扩散提供了条件,增加了氧化铁皮去除难度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李锦程
董帅君
张朝磊
李娜
王艺霏
吴咏锦
关键词:  残余元素  高碳硬线  高温氧化  氧化铁皮剥离性    
Abstract: By means of thermogravimetric analysis, high-temperature oxidation experiments, characterization of the elemental occurrence states and determination of the oxide skin density, a comparative analysis of the high-temperature oxidation behavior of 82B high-carbon steels were investigated at 900 ℃ to 1 100 ℃, there were two kinds of steel used in the test, one is 82B high-carbon steel containing 0.08%Cu produced by a short process using scrap steel as the raw material, and the orther is 82B high-carbon steel containing 0.02%Cu produced by a traditional long process. The influence of the residual element Cu on the high temperature oxidation behavior was studied. The results show that Cu can reduce the oxidation rate. After 1 hour at 900 ℃ and 1 000 ℃, Cu tends to aggregate at the grain boundaries of the substrate surface and between the oxide scale and the substrate interface, while at 1 100 ℃, Cu is dispersed in the oxide scale. As the temperature increases, the flatness of the interface between the oxide scale and the substrate decreases, and the FeCr2O4 and Fe2SiO4 oxide films formed by Cr and Si elements at the interface become loose, providing convenience for Cu diffusion into the oxide scale and increasing the difficulty of removing of the oxide scale.
Key words:  residual elements    high-carbon hard wire    high-temperature oxidation    strippability of steel oxide scale
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TG156.1  
基金资助: 国家重点研发计划(2023YFB3710205)
通讯作者:  *张朝磊,北京科技大学碳中和研究院副教授。主要从事先进钢铁材料等研究。zhangchaolei@ustb.edu.cn   
作者简介:  李锦程,现为北京科技大学工程博士研究生,主要研究方向为高碳硬线组织性能调控。
引用本文:    
李锦程, 董帅君, 张朝磊, 李娜, 王艺霏, 吴咏锦. 残余元素Cu对预应力钢绞线用82B高碳钢高温氧化行为的影响[J]. 材料导报, 2025, 39(12): 24100160-6.
LI Jincheng, DONG Shuaijun, ZHANG Chaolei, LI Na, WANG Yifei, WU Yongjin. Effect of Residual Element Cu on the High Temperature Oxidation Behavior of 82B High-carbon Steel for Prestressed Steel Strands. Materials Reports, 2025, 39(12): 24100160-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100160  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24100160
1 Wei F C, Zhang T, Xu L, et al. Materials Research Express, 2019, 6, 106507.
2 Wang J, Mu J, Wan S, et al. Progress in Natural Science:Materials International, 2023, 33, 718.
3 Lyu M, Mi X Y, Zhang Z H, et al. Chinese Journal of Engineering, 2020, 42(1), 102 (in Chinese).
吕明, 米小雨, 张朝晖, 等. 工程科学学报, 2020, 42(1), 102.
4 Wei H, Chen Y L, Su L, et al. Materials Research Express, 2018, 5, 086506.
5 Wang N T, Chen J L, Wang L J, et al. Special Steel, 2023, 44(3), 114 (in Chinese).
王宁涛, 陈继林, 王利军, 等. 特殊钢, 2023, 44(3), 114.
6 Wang H, Huang B C, Cao G M, et al. Journal of Central South University, 2023, 54(1), 53 (in Chinese).
王皓, 黄标彩, 曹光明, 等. 中南大学学报, 2023, 54(1), 53.
7 Yang C F, Su H, Li L, et al. Iron & Steel, 2007, 42(4), 57 (in Chinese).
杨才福, 苏航, 李丽, 等. 钢铁, 2007, 42(4), 57.
8 Xin W B, Song B, Hu C L, et al. Chinese Journal of Engineering, 2015, 37(3), 317 (in Chinese).
辛文彬, 宋波, 胡春林, 等. 工程科学学报, 2015, 37(3), 317.
9 Raabe D, Joviević-Klug M, Ponge D, et al. Annual Review of Materials Science, 2024, 54, 247.
10 Wang J Y, Yi G W, Wang S H, et al. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5), 948 (in Chinese).
王军阳, 易戈文, 万善宏, 等. 中国腐蚀与防护学报, 2023, 43(5), 948.
11 Yin L, Sridhar S. Metallurgical and Materials Transactions B, 2010, 41, 1095.
12 Li Z F, He Y Q, Cao G M, et al. Materials Reports, 2018, 32(2), 259 (in Chinese).
李志峰, 何永全, 曹光明, 等. 材料导报, 2018, 32(2), 259.
13 Wang L, Dong J H, Han D, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(6), 545 (in Chinese).
王雷, 董俊华, 韩达, 等. 中国腐蚀与防护学报, 2020, 40(6), 545.
14 Panasiuk D, Daigo I, Hoshino T, et al. Journal of Industrial Ecology, 2022, 26, 1040.
15 Zou D, Zhou Y, Zhang X, et al. Materials Characterization, 2018, 136, 435.
16 Zhao G, Zhang J, Li J, et al. Journal of Iron and Steel Research International, 2022, 29, 281.
17 Kondo Y, Tanei H. Iron and Steel Institute of Japan International, 2015, 55, 1044.
18 Hariharan K, Feng L, Kadirvel K, et al. Corrosion Science, 2024, 233, 112090.
19 Rizzi M, Guerrini E, Trasatti S P, Metallurgia Italiana, 2012, 104, 29.
20 Webler B, Yin L, Sridhar S. Metallurgical and Materials Transactions B, 2008, 39, 725.
21 Sun B, He Y Q, Liu Z Y, et al. Materials Reports, 2016, 30(16), 100 (in Chinese).
孙彬, 何永全, 刘振宇, 等. 材料导报, 2016, 30(16), 100.
22 Wang C, Wu H, Li Z, et al. Metals, 2021, 11, 312.
23 Arreola-Villa S A, Vergara-Hernández H J, Solorio-Diáz G, et al. Metals, 2022, 12, 147.
24 Sun B, Gao S L, Hao M X, et al. Materials Reports, 2023, 37(4), 145 (in Chinese).
孙彬, 高圣伦, 郝明欣, 等. 材料导报, 2023, 37(4), 145.
25 Ma T, Li H R, Gao J X, et al. Chinese Journal of Materials Research, 2019, 33(3), 225 (in Chinese).
马涛, 李慧蓉, 高建新, 等. 材料研究学报, 2019, 33(3), 225.
26 Zhang S, Li H, Jiang Z, et al. Journal of Materials Science & Technology, 2022, 115, 103.
27 Tu Y W, Zhu L H. Transactions of Materials and Heat Treatment, 2022, 43(12), 125 (in Chinese).
涂有旺, 朱丽慧. 材料热处理学报, 2022, 43(12), 125.
28 Sun B, Hao M X, You H G, et al. Materials Reports, 2020, 34(16), 16131 (in Chinese).
孙彬, 郝明欣, 尤宏广, 等. 材料导报, 2020, 34(16), 16131.
29 Yu X L, Jiang Z Y, Yang D J, et al. Advanced Materials Research, 2012, 572, 249.
30 Wu Q L, Zhang Z H, Dong X M, et al. Corrosion Science, 2013, 75, 400.
31 Pan T, Zhao L, Chai X Y, et al. Materials Reports, 2023, 37(19), 180 (in Chinese).
潘涛, 赵蕾, 柴希阳, 等. 材料导报, 2023, 37(19), 180.
32 Shizukawa Y, Hayashi S, Yoneda S, et al. Oxidation of Metals, 2016, 86, 315.
33 Gaiser G, Krobath R, Presoly P, et al. Journal of Materials Research and Technology, 2023, 26, 9276.
34 Shen Z, Chen K, Yu H, et al. Acta Materialia, 2020, 194, 522.
[1] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[2] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[3] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[4] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[5] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[6] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[7] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[8] 赖旭平, 李天方, 刘瑞, 孙红亮. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
[9] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[10] 孙彬, 郝明欣, 尤宏广, 王皓, 曹光明. Fe-1Cr-0.2Si钢的高温氧化行为[J]. 材料导报, 2020, 34(16): 16131-16135.
[11] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[12] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[13] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[14] 孟堃, 詹肇麟, 王远, 王伟, 于晓华, 荣菊. 振动助渗制备45钢表面铝化物涂层及其抗高温氧化性能[J]. 材料导报, 2018, 32(16): 2865-2869.
[15] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed