Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100092-9    https://doi.org/10.11896/cldb.24100092
  无机非金属及其复合材料 |
不锈钢筋珊瑚海水混凝土梁抗剪性能试验及抗剪承载力计算
区王生1, 徐炜圣2, 覃钦泉2, 陈宗平1,2,*
1 南宁学院土木与建筑工程学院,南宁 530200
2 广西大学土木建筑工程学院,南宁 530004
Shear Performance Tests and Shear Bearing Capacity Calculation of Stainless Steel Reinforced Coral Aggregate Concrete
OU Wangsheng1, XU Weisheng2, QIN Qinquan2, CHEN Zongping1,2,*
1 College of Architecture and Civil Engineering, Nanning University, Nanning 530200, China
2 College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 25008KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为对不锈钢筋珊瑚海水混凝土(SSRCAC)梁的抗剪性能进行研究,考虑剪跨比、面积配箍率、纵筋配筋率和钢筋种类设计了10个试件,其中包括8个SSRCAC梁试件以及2个普通钢筋珊瑚海水混凝土梁试件;通过剪切性能试验获取了各试件的荷载-跨中挠度曲线,并分析了其抗剪承载力、应变分布以及剪切延性。试验结果表明,SSRCAC典型破坏形态为剪压破坏,但各试件中不锈钢箍筋未能达到屈服强度;不同剪跨比λ下,裂缝的发展以及数量的差异不大,但剪跨比对抗剪承载力以及剪切延性的影响较明显。与普通钢筋试件相比,剪跨比λ为1.0和2.0的情况下,不锈钢筋试件的抗剪承载力分别比普通钢筋试件高18.4%和64.4%。纵筋配筋率对抗剪承载力的贡献不大。最后,考虑不锈钢筋和珊瑚海水混凝土的影响,提出了SSRCAC抗剪承载力计算方法,可为此类构件在海洋工程方面的应用提供试验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
区王生
徐炜圣
覃钦泉
陈宗平
关键词:  不锈钢筋  珊瑚海水混凝土    抗剪性能  抗剪承载力    
Abstract: In order to investigate the shear performance of stainless steel reinforced coral aggregate sea-sand-sea water concrete beams (SSRCAC), ten specimens of SSRCAC beams were designed considering the effects of shear span ratio, spacing of stirrups, reinforcement ratio, and types of reinforcing steel, which included eight specimens with stainless steel reinforcing bars and two specimens with steel reinforcing bars. Through the test, load-displacement curves were obtained, and the shear capacity, strain distribution, and shear ductility were analyzed. The results show that the typical failure mode of the SSRCAC under shear is shear-compression failure, and the stainless steel stirrups of all specimens basically do not reach the yield strength. The development and the number of cracks in specimens with different shear span ratios show no significant differences. Shear span ratio has a large influence on the shear capacity and shear ductility of the specimens. With the shear span ratio λ of 1.0 and 2.0, the shear capacity of stainless steel reinforcement specimens is 18.4% and 64.4% higher than that of carbon steel reinforcement, respectively. The longitudinal reinforcement ratio has little influence on the shear capacity. Finally, considering the effects of stainless steel reinforcement and coral aggregate concrete, a design method for the shear capacity of SSRCAC beams was proposed, which can provide test basis for the application of such structures in marine engineering.
Key words:  stainless steel reinforcement    coral aggregate concrete    beam    shear performance    shear bearing capacity
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TU398+.9  
基金资助: 国家自然科学基金(51578163);广西科技计划(桂科AD25069072)
通讯作者:  *陈宗平,博士,广西大学土木建筑工程学院教授、博士研究生导师。主要从事结构工程、海洋工程方面教学与研究工作。zpchen@gxu.edu.cn   
作者简介:  区王生,南宁学院土木与建筑工程学院高级工程师,在陈宗平教授的带领下开展研究。目前主要研究领域为海洋及近海混凝土结构。
引用本文:    
区王生, 徐炜圣, 覃钦泉, 陈宗平. 不锈钢筋珊瑚海水混凝土梁抗剪性能试验及抗剪承载力计算[J]. 材料导报, 2025, 39(22): 24100092-9.
OU Wangsheng, XU Weisheng, QIN Qinquan, CHEN Zongping. Shear Performance Tests and Shear Bearing Capacity Calculation of Stainless Steel Reinforced Coral Aggregate Concrete. Materials Reports, 2025, 39(22): 24100092-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100092  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100092
1 Da B, Yu H, Ma H, et al. Construction and Building Materials, 2016, 122, 81.
2 Da B, Chen Y, Yu H, et al. Journal of Cleaner Production, 2022, 339, 130572.
3 Yu H, Da B, Ma H, et al. Construction and Building Materials, 2020, 246, 118390.
4 Cao Y, Bao J, Zhang P, et al. Journal of Building Engineering, 2022, 105199.
5 Chen Zongping, Zhou Ji, Chen Yuliang, et al. Chinese Journal of Applied Mechanics, 2020, 37(5), 1999(in Chinese).
陈宗平, 周济, 陈宇良, 等. 应用力学学报, 2020, 37(5), 1999.
6 Da B, Yu H, Ma H, et al. Construction and Building Materials, 2016, 123, 47.
7 Loporcaro G, Pampanin S, Kral M V. Construction and Building Materials, 2019, 228, 116606.
8 Jing Q, Fang X, Ni J X, et al. Journal of Highway and Transportation Research and Development, 2017, 34(10), 51(in Chinese)
景强, 方翔, 倪静姁, 等. 公路交通科技, 2017, 34(10), 51.
9 Cramer S D, Covino J R B S, Bullard S J, et al. Cement and Concrete Composites, 2002, 24(1), 101.
10 Feng X G, Lu X, Lu X Y, et al. Journal of Building Materials, 2021, 24(6), 1322(in Chinese)
冯兴国, 卢潇, 卢向雨, 等. 建筑材料学报, 2021, 24(6), 1322.
11 Lollini F, Carsana M, Gastaldi M, et al. Corrosion Reviews, 2019, 37(1), 3.
12 Wu X, Ye D, Li H, et al. Construction and Building Materials, 2018, 178, 135.
13 Zhang L, Leng J. Building Science, 2022, 38(1), 85(in Chinese).
张龙, 冷捷. 建筑科学, 2022, 38(1), 85.
14 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for quality control of concrete:GB 50164, China Architecture & Building Press, China, 2011(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土质量控制标准:GB 50164, 中国建筑工业出版社, 2011.
15 State Administration for Market Regulation. Metallic materials-Tensile testing-Part 1, Method of test at room temperature:GB/T 228. 1, Standards Press of China, China, 2021(in Chinese)
国家市场监督管理总局. 金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228. 1, 中国标准出版社, 2021.
16 Chen Z P, Li S X, Zhou J, et al. Materials Reports, 2023, 37(20), 113(in Chinese)
陈宗平, 黎盛欣, 周济, 等. 材料导报, 2023, 37(20), 113.
17 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures:GB 50010 , China Architecture & Building Press, China, 2015(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010, 中国建筑工业出版社, 2015.
18 Yi W J, Lyu Y M. Journal of Building Structures, 2009, 30(4), 94(in Chinese)
易伟建, 吕艳梅. 建筑结构学报, 2009, 30(4), 94.
19 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for lightweight aggregate concrete structures:JGJ 12, China Architecture & Building Press, China, 2006(in Chinese).
中华人民共和国住房和城乡建设部. 轻骨料混凝土结构设计规程:JGJ 12, 中国建筑工业出版社, 2006.
20 Da B, Yu H F, Ma H Y, et al. Scientia Sinica (Technologica), 2019, 49(2), 212(in Chinese)
达波, 余红发, 麻海燕, 等. 中国科学:技术科学, 2019, 49(2), 212.
21 Li J. Experimental study on mechanical behavior of diagonal section of reinforced concrete beams with HRB500 stirrups. Master's Thesis, Hunan University, China, 2007(in Chinese).
李娟. HRB500级箍筋混凝土梁斜截面受力性能试验研究. 硕士学位论文, 湖南大学, 2007.
22 Wang Y A. Shear behaviour of seawater sea-sand coral aggregate concrete beams reinforced with CFRP strip stirrups. Master's Thesis, East China Jiaotong University, China, 2023(in Chinese).
王怿安. CFRP条带箍海水海砂珊瑚混凝土梁抗剪性能研究. 硕士学位论文, 华东交通大学, 2023.
23 Ma R G. Experimental study on shear performance of SFCB coral concrete beams. Master's Thesis, Guangxi University of Science and Technology, China, 2023(in Chinese).
马瑞刚. SFCB珊瑚混凝土梁受剪性能试验研究. 硕士学位论文, 广西科技大学, 2023.
24 Zhang J W. Experimental study on shear behavior of all coral concrete beams reinforced with CFRP bars. Master's Thesis, Guilin University of Technology, China, 2020(in Chinese).
张继旺. CFRP筋全珊瑚混凝土梁受剪性能试验研究. 硕士学位论文, 桂林理工大学, 2020.
25 Cui Y Q. Experimental study on shear performance of stainless steel reinforced concrete beams with web reinforcement. Master's Thesis, Zhengzhou University, China, 2022(in Chinese).
崔耘齐. 有腹筋不锈钢筋混凝土梁抗剪性能试验研究. 硕士学位论文, 郑州大学, 2022.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[3] 贺煊博, 姚国文, 周礼平, 汤杨, 赵玲, 郭增伟. ICCP作用下桥梁破损拉吊索Cl-扩散行为研究[J]. 材料导报, 2025, 39(22): 24070210-8.
[4] 于博, 蔺鹏臻, 何志刚. 钢-混凝土组合梁中栓钉的非线性受力特性分析[J]. 材料导报, 2025, 39(19): 24080143-8.
[5] 王宗山, 杨俊, 周建庭, 张洪. UHPC加固石拱桥试验与极限承载力计算[J]. 材料导报, 2025, 39(17): 24080230-7.
[6] 涂义亮, 任思雨, 赵林, 凌玲, 柴贺军. 玄武岩纤维-粉煤灰提升水泥土抗剪性能试验研究[J]. 材料导报, 2025, 39(16): 24050216-8.
[7] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[8] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[9] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[10] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[11] 蔺鹏臻, 于博, 何志刚. 焊钉锈蚀对混凝土板锈胀开裂行为的数值模拟及相关影响参数分析[J]. 材料导报, 2024, 38(24): 23120055-8.
[12] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[13] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[14] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[15] 郭晓宇, 温晓晶, 孟庆领, 王海良, 彭全敏, 张龙明. 腐蚀-荷载耦合作用下耐候桥梁钢及其焊接节点性能劣化研究进展[J]. 材料导报, 2023, 37(11): 22070019-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed