Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090161-9    https://doi.org/10.11896/cldb.24090161
  无机非金属及其复合材料 |
磁性水泥基浆液粘度瞬变特性及倾角裂隙磁注浆机理研究
黎照1,2, 鲍晓鹏1, 刘杰1,*, 李政3, 杨渝南1, 乔志存1
1 三峡大学土木与建筑学院,湖北 宜昌 443002
2 新余学院建筑与设计学院,江西 新余 338000
3 湖北省地质局水文地质工程地质大队,湖北 荆州 434020
Study on the Viscosity Transient Characteristics of Magnetic Cementitious Slurry and the Mechanism of Magnetic Grouting in Inclined Fissures
LI Zhao1, BAO Xiaopeng1, LIU Jie1,2,*, LI Zheng3, YANG Yunan1,2, QIAO Zhicun1
1 College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, Hubei, China
2 College of Architecture and Design, Xinyu University, Xinyu 338000, Jiangxi, China
3 Hydrogeology and Engineering Geology Brigade, Hubei Geological Bureau, Jingzhou 434020, Hubei, China
下载:  全 文 ( PDF ) ( 58096KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 岩体中存在大量倾斜裂隙,在受到外力作用时容易发生滑移、坍塌等危害,对工程结构的安全性和稳定性构成了严重威胁。基于自主研制的水泥基磁性浆液材料,通过开展扫描电子显微镜(SEM)、X射线衍射(XRD)和抗压强度试验等,从微观角度分析了水性环氧树脂对磁性浆液强度的影响机制,分析了梯度磁场下不同区域的磁感应强度变化和磁颗粒成链演化过程,揭示了磁场强度下浆液粘度骤变的内在影响机制。系统研究了磁场作用下磁性浆液在裂隙中的注浆扩散,建立了磁性浆液磁注浆扩散模型。结果表明:(1)浆液动力粘度随磁感应强度的增加呈指数型函数上升,当磁场强度达到1 000 Gs时,浆液粘度相较于初始动力粘度提高了17.26倍;(2)在磁场作用下磁颗粒间相互作用形成链式结构,随磁场强度增大,磁力链长度和浆液粘度均显著增加;(3)磁场强度的提升有助于增大磁性浆液的扩散面积,当磁场强度由6 000 Gs增加到12 000 Gs时,浆液扩散面积增长48.87%。将扩散模型理论值与试验值进行对比,二者间误差值均较小。该研究成果对完善磁性浆液理论与应用具有一定参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎照
鲍晓鹏
刘杰
李政
杨渝南
乔志存
关键词:  倾角裂隙  磁性浆液  磁场强度  粘度瞬变  磁注浆模型    
Abstract: There are a large number of inclined fractures in the rock mass, which may be prone to hazards such as slipping and collapsing when subjected to external forces, posing a serious threat to the safety and stability of engineering structures. Based on self-developed cement-based magnetic slurry materials, through scanning electron microscope (SEM), X-ray diffraction (XRD) and compressive strength tests, the influence mechanism of waterborne epoxy resin on the strength of magnetic liquid from a microscopic perspective was analyzed, the changes in magnetic induction intensity at different regions under the gradient magnetic field were analyzed, and the evolution process of magnetic particle chaining was investigated. The internal influencing mechanism of the sudden change in slurry viscosity under the magnetic field intensity was revealed. Using the self-developed variable inclination fissure visualization grouting test device, systematically studied the grouting diffusion law of magnetic slurry in fissures with different inclinations under the action of magnetic field, and established a magnetic slurry grouting diffusion model that takes into account the action of magnetic field and the relationship between the viscosity of the slurry and the change of magnetic induction strength. The results show that: (1) the dynamic viscosity of the slurry increases exponentially with the increase of the magnetic induction intensity. When the magnetic field intensity reaches 1 000 Gs, the slurry viscosity increases by 17.26 times compared with the initial dynamic viscosity. (2) Under the action of the magnetic field, the magnetic particles interact with each other to form a chain structure. The greater the magnetic field intensity, the more significantly the length of the magnetic force chain and the higher slurry viscosity. (3) When the magnetic field intensity increases from 6 000 Gs to 12 000 Gs, the diffusion area of the slurry increases by 48.87%, indicating that the increase of the magnetic field intensity helps to enhance the diffusion area of the magnetic slurry. The error values between theoretical values of the diffusion model and the experimental values are all relatively small. These findings have certain reference value for perfecting the theory and application of magnetic slurry.
Key words:  inclined fissure    magnetic slurry    magnetic field strength    viscosity transient    magnetic grouting modeling
发布日期:  2025-10-27
ZTFLH:  TU578  
基金资助: 国家自然科学基金(52079071);三峡库区地质灾害教育部重点实验室(2020KDZ08);湖北巴东地质灾害国家野外科学观测研究站开放基金(BNORSG202313)
通讯作者:  *刘杰,博士,三峡大学土木与建筑学院教授、博士研究生导师。目前主要从事磁性工程材料、深地岩体稳定性与支护等方面的研究工作。202008140011006@ctgu.edu.cn   
作者简介:  黎照,三峡大学土木与建筑学院博士研究生,在刘杰教授的指导下进行研究。
引用本文:    
黎照, 鲍晓鹏, 刘杰, 李政, 杨渝南, 乔志存. 磁性水泥基浆液粘度瞬变特性及倾角裂隙磁注浆机理研究[J]. 材料导报, 2025, 39(20): 24090161-9.
LI Zhao, BAO Xiaopeng, LIU Jie, LI Zheng, YANG Yunan, QIAO Zhicun. Study on the Viscosity Transient Characteristics of Magnetic Cementitious Slurry and the Mechanism of Magnetic Grouting in Inclined Fissures. Materials Reports, 2025, 39(20): 24090161-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090161  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090161
1 Kang H P. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 40 (1), 1.
2 Kvartsberg S, Fransson Å. Tunnelling and Underground Space Technology, 2013, 38, 38.
3 Zhou S H. Chinese Science Bulletin, 2019, 64(25), 2608(in Chinese).
周顺华. 科学通报, 2019, 64(25), 2608.
4 Wang F J, Bai X Y, Zhang Y G, et al. Materials Reports, 2023, 37(22), 277(in Chinese).
王凤姣, 白晓宇, 张云光, 等. 材料导报, 2023, 37(22), 277.
5 Xue X R, Zhang K, Ma B L, et al. Computers and Geotechnics, 2023, 154, 105166.
6 Qin W, Wen Q N, Materials Reports, 2016, 30(24), 152(in Chinese).
秦伟, 翁其能. 材料导报, 2016, 30(24), 152.
7 Heidari M, Tonon F. International Journal of Rock Mechanics and Mining Sciences, 2015, 76, 200.
8 Jing D S, Bai X Y, Feng Z W, et al. Materials Reports, 2021, 35(19), 19223(in Chinese).
井德胜, 白晓宇, 冯志威, 等. 材料导报, 2021, 35(19), 19223.
9 He W, Zhou Y Q, Wang Q. Materials Reports, 2018, 32(23), 4125. (in Chinese)
何伟, 周予启, 王强. 材料导报, 2018, 32(23), 4125.
10 Cao Z Y, Hou Y, Du P, et al. Journal of Building Materials, 2024, 27(7), 645(in Chinese).
曹卓颖, 侯勇, 杜鹏, 等. 建筑材料学报, 2024, 27(7), 645.
11 Zhang Y H, Wang X D, Wang H, et al. Coal Geology & Exploration, 2024, 52(5), 98(in Chinese).
张跃宏, 王晓东, 王海, 等. 煤田地质与勘探, 2024, 52 (5), 98.
12 Fu H Y, Yao J, Qiu X. Journal of Central South University(Science and Technology), 2024, 55(3), 1107(in Chinese).
付宏渊, 姚杰, 邱祥. 中南大学学报(自然科学版), 2024, 55(3), 1107.
13 Zhang M X, Wang P F, Yang T, et al. Coal Science and Technology, 2025, 53(4), 348 (in Chinese).
张明璇, 王朋飞, 杨涛, 等. 煤炭科学技术, 2025, 53(4), 348.
14 Zhao X Y, Yang K, He X, et al. Materials Reports, 2024, 38(9), 153(in Chinese).
赵新元, 杨科, 何祥, 等. 材料导报, 2024, 38 (9), 153.
15 Xu X J, Zhu Z J, Wang M, et al. Journal of Central South University(Science and Technology), 2024, 55(2), 628(in Chinese).
徐先杰, 朱志敬, 王孟, 等. 中南大学学报(自然科学版), 2024, 55(2), 628.
16 Xiao J, Liu C Z, Liu Z Y, et al. China Journal of Highway and Transport, 2024, 37(6), 193(in Chinese).
肖杰, 刘财壮, 刘志勇, 等. 中国公路学报, 2024, 37(6), 193.
17 Fan Z A, Li Q Y, Guo Y X, et al. Concrete, 2023(2), 105(in Chinese).
范昭昂, 李秋义, 郭远新, 等. 混凝土, 2023(2), 105.
18 Li Y G, Liao Y S, Liu Y L, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(5), 1586(in Chinese).
李亚刚, 廖宜顺, 刘艳玲, 等. 硅酸盐通报, 2021, 40(5), 1586.
19 Li Z, Cai H, Liu J, et al. Scientific Reports, 2024, 14, 20115.
20 Wang D, Shi C, N. Farzadnia, et al. Materials, 2018, 181, 659.
21 Su Y, Yan N, Bai X Y, et al. Materials Reports, 2024, 38(9), 66(in Chinese).
苏悦, 闫楠, 白晓宇, 等. 材料导报, 2024, 38(9), 66.
22 Wang X Y, Construction and Building Materials, 2014, 69, 32.
23 Li D, Wang D, Ren C, et al. Construction and Building Materials, 2018, 188, 1007.
24 Lindsey C, Christopher R, Rebecca J L, et al. International Journal of Rock Mechanics and Mining Sciences, 2021, 145, 104853.
25 Lunn R, Corson L, Howell C, et al. Journal of Applied Geophysics, 2018, 155, 162.
26 Villar V P, Medina N F, Hernández-Olivares F. Construction and Building Materials, 2019, 201, 340.
27 Javahershenas F, Gilani M S, Hajforoush M. Journal of Building Engineering, 2021, 35, 101975.
28 Chen J, Wang J, Jin W L. Construction and Building Materials, 2016, 121, 53.
29 Liu J, Li Z, Li Z, et al. Acta Materiae Compositae Sinica, 2023, 40(2), 1025(in Chinese).
刘杰, 李政, 黎照, 等. 复合材料学报, 2023, 40(2), 1025.
30 Li Z, Cai H, Liu J, et al. Case Studies in Construction Materials, 2025, 22, e04487.
31 Tokura S, Hara M, Kawaguchi N, et al. Journal of Magnetism and Magnetic Materials, 2016, 68, 411.
32 Chen M, Niu X, Yu P, et al. Journal of Fluids and Structures, 2020, 97, 103008.
[1] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed