Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040202-10    https://doi.org/10.11896/cldb.24040202
  金属与金属基复合材料 |
纳米折纸的原理及工程实践方法
李欢笑1, 李康第2, 王灿3, 马小飞1, 张育新3,*
1 西安空间无线电技术研究所,西安 710199
2 重庆大学环境与生态学院,重庆 400044
3 重庆大学材料科学与工程学院,重庆 400044
Principles of Nano Origami and Its Engineering Practice Strategies
LI Huanxiao1, LI Kangdi2, WANG Can3, MA Xiaofei1, ZHANG Yuxin3,*
1 Xi’an Institute of Space Radio Technology, Xi’an 710199, China
2 College of Environment and Ecology, Chongqing University, Chongqing 400044, China
3 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 11721KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 折纸是一门历史悠久的艺术,可以通过不同程度的折叠,使一个偏向平面的物体拥有特殊的三维层面的特点。不仅如此,通过折纸可以得到特定的人工结构,使其泊松比、刚度、模量等力学性能发生转变,从而得到不同于天然材料的特殊性质。纳米折纸作为一种新兴的纳米材料,因其独特的力学性能和潜在的应用前景,吸引了广泛的关注。本文详细了介绍纳米折纸的原理,包括其材料特性、力学基础和形变机制。此外,本文还探讨了纳米折纸的工程实践方法并展望纳米折纸技术的未来发展方向和应用领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欢笑
李康第
王灿
马小飞
张育新
关键词:  纳米折纸  纳米结构  DNA折纸  纳米结构的稳定性    
Abstract: Origami is an art with a long history, and origami can make a biased planar object have special three-dimensional dimensions through different degrees of folding. Not only that, the three-dimensional structure obtained through origami can have a specific artificial structure, so that its Poisson’s ratio, stiffness, modulus and other mechanical properties are transformed, so as to obtain special properties different from natural materials. As an emerging nanomaterial, nano origami has attracted wide attention due to its unique mechanical properties and potential applications. In this paper, we introduce the principles of nano origami in detail, including its material properties, mechanical basis and deformation mechanism. In addition, this paper discusses the engineering practice method of nano origami and looks forward to the future development direction and application areas of nano origami technology.
Key words:  nano origami    nano structure    DNA origami    stability of nano-structures
发布日期:  2025-05-29
ZTFLH:  TH122  
基金资助: 军工项目 (JG2021016)
通讯作者:  *张育新,重庆大学材料学院教授、博士研究生导师。主要从事无机非金属矿物复合材料设计合成及面向新能源、环境新材料、新型海工材料和航天工程材料等应用研究。zhangyuxin@cqu.edu.cn   
作者简介:  李欢笑,北京航空航天大学博士研究生,西安空间无线电技术研究所工程师,主要研究方向为空间天线结构设计、仿真分析。
引用本文:    
李欢笑, 李康第, 王灿, 马小飞, 张育新. 纳米折纸的原理及工程实践方法[J]. 材料导报, 2025, 39(11): 24040202-10.
LI Huanxiao, LI Kangdi, WANG Can, MA Xiaofei, ZHANG Yuxin. Principles of Nano Origami and Its Engineering Practice Strategies. Materials Reports, 2025, 39(11): 24040202-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040202  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040202
1 Ahmed A R, Gauntlett O C, Camci-Unal G. ACS Omega, 2021, 6(1), 46.
2 Wang J, Song C, Xu J, et al. Progress in Chemistry, 2012, 24(10), 1936.
3 Ai C, Chen Y, Xu L, et al. Advanced Engineering Materials, 2021, 23(10), 2100473.
4 Birkedal V, Dong M, Golas M M, et al. Microscopy Research and Technique, 2011, 74(7), 688.
5 Buchberger A, Riker K, Bernal-Chanchavac J, et al. ACS Applied Bio Materials, 2022, 5(10), 4625.
6 Callens S J P, Zadpoor A A. Materials Today, 2018, 21(3), 241.
7 Cao Y, Pei R. Chinese Science Bulletin-Chinese, 2019, 64(10), 1037.
8 Chandrasekaran A R. ACS Synthetic Biology, 2020, 9(7), 1490.
9 Chang B, Xu X, Liang D, et al. Chinese Space Science and Technology, 2022, 42(4), 146.
10 Chang X, Yang Q, Lee J, et al. Current Topics in Medicinal Chemistry, 2022, 22(8), 652.
11 Colozza N, Caratelli V, Moscone D, et al. Biosensors-Basel, 2021, 11(9), 328.
12 Chen S, Chen J, Zhang X, et al. Light-Science & Applications, 2020, 9(1), 75.
13 Chen S S, Liu X, Liu Z G, et al. Acta Physica Sinica, 2019, 68(24), 248101.
14 Chen Y, Yan J, Feng J. Symmetry-Basel, 2019, 11(9), 1101.
15 Dai L, Liu P, Hu X, et al. Analyst, 2021, 146(6), 1807.
16 Dai L Z, Hu X X, Liu P, et al. Acta Physica Sinica, 2021, 70(6), 068201.
17 Dass M, Guer F N, Kolqtaj K, et al. Journal of Physical Chemistry C, 2021, 125(11), 5969.
18 Dhanasekar N N, Thiyagarajan D, Bhatia D. Chemistry-an Asian Journal, 2022, 17(19), E202200591.
19 Dong Y, Mao Y. Chembiochem, 2019, 20(19), 2422.
20 Donohue N. Library Journal, 2016, 141(19), 90.
21 Drobnak I, Ljubetic A, Gradisar H, et al. Protein-Based Engineered Nanostructures, 2016, 940, 7.
22 Cai Keqian, Jin Mingshan, Jiang Kaiyu. Materials Reports, 2015, 29(7), 129 (in Chinese).
蔡克乾, 靳明山, 姜开宇. 材料导报, 2015, 29(7), 129.
23 Endo M, Sugiyama H. Journal of Synthetic Organic Chemistry Japan, 2011, 69(12), 1352.
24 Endo M, Sugiyama H. Current Protocols in Nucleic Acid Chemistry, 2011, Chapter 12, Unit12. 18.
25 Endo M, Yang Y, Sugiyama H. Biomaterials Science, 2013, 1(4), 347.
26 Fan H J, Li J, Wang L H, et al. Acta Physica Sinica, 2021, 70(6), 068702.
27 Gao Y K. Cailiao Gongcheng-Journal of Materials Engineering, 2021, 49(5), 38.
28 Fang W N, Fan C H, Liu H J. Acta Polymerica Sinica, 2017(12), 1993.
29 Glembockyte V, Grabenhorst L, Trofymchuk K, et al. Accounts of Chemical Research, 2021, 54(17), 3338.
30 Gopfrich K, Keyser U F. Biological and Bio-Inspired Nanomaterials:Properties and Assembly Mechanisms, 2019, 1174, 331.
31 Groeger G, Pluemer L. Remote Sens, 2012, 71, 12.
32 Guo B Y, Zeng T, Wu H C. Science Bulletin, 2015, 60(3), 287.
33 Hannewald N, Winterwerber P, Zechel S, et al. Angewandte Chemie-International Edition, 2021, 60(12), 6218.
34 Hasanzadeh M, Shadjou N. Materials Science and Engineering C-Materials for Biological Applications, 2016, 61, 979.
35 He L, Mu J, Gang O, et al. Advanced Science, 2021, 8(8), 2003775.
36 He Z, Shi K, Li J, et al. Iscience, 2023, 26(5), 106638.
37 Holmes D P. Current Opinion in Colloid & Interface Science, , 2019, 40, 118.
38 Zhang Changsong, Wang Xiangyang, Wei Lizhu, et al. Materials Reports, 2024, 38(6), 240 (in Chinese).
张昌松, 王向阳, 魏立柱, 等. 材料导报, 2024, 38(6), 240.
39 Hong Y, Liu Y, Xu Y, et al. Chinese Space Science and Technology, 2020, 40(5), 91.
40 Zeng X. Design and analysis of solid surface deployable antenna based on origami. Ph. D. Thesis, Southeast University, China, 2024 (in Chinese).
曾祥. 基于折纸的固面可展开天线设计与分析. 硕士学位论文, 东南大学, 2024.
41 Jia S, Chao J, Fan C, et al. Progress in Chemistry, 2014, 26(5), 695.
42 Jia Y, Gu H. Chinese Science Bulletin-Chinese, 2019, 64(10), 1008.
43 Johnson M, Chen Y, Hovet S, et al. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(11), 2023.
44 Kearney C J, Lucas C R, O’Brien F J, et al. Advanced Materials, 2016, 28(27), 5509.
45 Kogikoski Jr S, Ameixa J, Mostafa A, et al. Chemical Communications, 2023, 59(32), 4726.
46 Kogikoski S J, Paschoalino W J, Kubota L T. Trac-Trends in Analytical Chemistry, 2018, 108, 88.
47 Kuzuya A, Ohya Y. Polymer Journal, 2012, 44(6), 452.
48 Kuzuya A, Ohya Y. Accounts of Chemical Research, 2014, 47(6), 1742.
49 Kuzyk A, Jungmann R, Acuna G P, et al. ACS Photonics, 2018, 5(4), 1151.
50 Zhang Y M, Li J, Xia J J, et al. Materials Reports, 2021, 35(1), 1212 (in Chinese).
张雨萌, 李洁, 夏进军, et al. 材料导报, 2021, 35(1), 1212.
51 Li J, Chen Y, Yang Y R. Chinese Science Bulletin-Chinese, 2023, 68(32), 4383.
52 Li S, Fang H, Sadeghi S, et al. Advanced Materials, 2019, 31(5), 1805282.
53 Liang Y, Chen T Q, Li K, et al. Progress in Biochemistry and Biophysics, 2023, 50(2), 208.
54 Linko V, Nummelin S, Aarnos L, et al. Nanomaterials, 2016, 6(8), 139.
55 Linko V, Ora A, Kostiainen M A. Trends in Biotechnology, 2015, 33(10), 586.
56 Liu W, Duan H, Zhang D, et al. Applied Bionics and Biomechanics, 2021, 2021(1), 9112407.
57 Loescher S, Groeer S, Walther A. Angewandte Chemie-International Edition, 2018, 57(33), 10436.
58 Lu L, Leanza S, Zhao R R. Applied Mechanics Reviews, 2023, 75(5), 050801.
59 Ma J, Xu J. Journal of Electronics & Information Technology, 2021, 43(6), 1750.
60 Ma N, Minevich B, Liu J, et al. Topics in Current Chemistry, 2020, 378(2), 157.
61 Ma Z T, Shang Y X, Liu F S, et al. Acta Polymerica Sinica, 2022, 53(10), 1187.
62 Manuguri S, Nguyen M K, Loo J, et al. Bioconjugate Chemistry, 2022, 34(1), 6.
63 Matczyszyn K, Olesiak-Banska J. Journal of Nanophotonics, 2012, 6(1), 064505.
64 Meloni M, Cai J, Zhang Q, et al. Advanced Science, 2021, 8(13), 2000636.
65 Michelotti N, Johnson-Buck A, Manzo A J, et al. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2012, 4(2), 139.
66 Juul S, Iacovelli F, Falconi M, et al. ACS Nano, 2013, 7(11), 9724.
67 Park W M. International Journal of Molecular Sciences, 2020, 21(10), 3584.
68 Miskin M Z. Current Opinion in Solid State & Materials Science, 2020, 24(6), 100882.
69 Peraza-Hernandez E A, Hartl D J, Malak R J, et al. Smart Materials and Structures, 2014, 23(9), 094001.
70 Poppleton E, Urbanek N, Chakraborty T, et al. Rna Biology, 2023, 20(1), 510.
71 Qiu J, Zhao H, Lei Y. Smartmat, 2022, 3(3), 447.
72 Rajendran A, Endo M, Sugiyama H. Angewandte Chemie-International Edition, 2012, 51(4), 874.
73 Rus D, Tolley M T. Nature Reviews Materials, 2018, 3(6), 101.
74 Nukala P, Varma M M. Micron, 2022, 162, 103347.
75 Sakai Y, Islam M S, Adamiak M, et al. Genes, 2018, 9(12), 571.
76 Santangelo C D. Annual Review of Condensed Matter Physics, 2017, 8(1), 165.
77 Shah S I H, Lim S. Materials & Design, 2021, 198, 109345.
78 Shen B, Tapio K, Linko V, et al. Nanomaterials, 2016, 6(8), 146.
79 Shen Z C, Xia Y, Ding Y G, et al. Cailiao Gongcheng-Journal of Materials Engineering, 2019, 47(11), 11.
80 Shi J, Guo X, Chen R, et al. Progress in Chemistry, 2016, 28(4), 577.
81 Tang J, Wei F. Macromolecular Materials and Engineering, 2022, 307(2), 2100671.
82 Tao Q, Chen Q, Bian X J, et al. Chinese Journal of Analytical Chemistry, 2021, 49(5), 743.
83 Tong Z, Li M, Cui C, et al. Chinese Space Science and Technology, 2021, 41(3), 82.
84 Torring T, Voigt N V, Nangreave J, et al. Chemical Society Reviews, 2011, 40(12), 5636.
85 Turner N, Goodwine B, Sen M. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2016, 230(14), 2345.
86 Wang D, Zhang Y, Liu D. F1000Research, 2017, 6, 503.
87 Wang F, Wang L, Fan C, et al. Chinese Science Bulletin-Chinese, 2019, 64(10), 989.
88 Wang F, Zhang X, Liu X, et al. Small, 2019, 15(26), 1900013.
89 Wang J, Li Z, Willner I. Angewandte Chemie-International Edition, 2023, 62(18), E202215332.
90 Wang J, Yin J, Niu R, et al. Journal of Electronics & Information Technology, 2020, 42(6), 1313.
91 Wang J, Zhang P, Xia Q, et al. Journal of Southern Medical University, 2021, 41(6), 960.
92 Wang Q, Fan Y, Li B. Journal of Southern Medical University, 2014, 34(9), 1235.
93 Wang S, Xie X, Chen Z, et al. International Journal of Molecular Sciences, 2021, 22(14), 7558.
94 Wang S, Zhou Z, Ma N, et al. Sensors, 2020, 20(23), 6899.
95 Wang Z, Fu L, Gao H, et al. Journal of Hygiene Research, 2017, 46(2), 277.
96 Wang Z G, Song C, Ding B. Small, 2013, 9(13), 2210.
97 Weiden J, Bastings M M C. Current Opinion in Colloid & Interface Science, 2021, 52, 101411.
98 Ebrahimi F, Ahari M F. Acta Mechanica, 2024, 235(4), 2193.
99 Mahinzare M, Rastgoo A, Ebrahimi F. Journal of Engineering Mechanics, 2024, 150(4), 04024007.
100 Wu S R, Chen T H, Tsai H Y. Journal of Mechanics, 2019, 35(5), 627.
101 Wu T C, Rahman M, Norton M L. Accounts of Chemical Research, 2014, 47(6), 1750.
102 Liu Jie, Li Zhiyong, He Junfeng, et al. Chinese Journal of Mechanics, 2023, 55(10), 2331 (in Chinese).
刘杰, 李志勇, 何俊峰, 等. 力学学报, 2023, 55(10), 2331.
103 Xia K, Shen J, Li Q, et al. ACS Nano, 2020, 14(2), 1319.
104 Xu B, Lin X, Mei Y. Cell Reports Physical Science, 2020, 1(11), 100244.
105 Fang K, Huang G, Yu G, et al. Mechanics of Advanced Materials and Structures, 2024, 31(29), 12099.
106 Yan Xu, Chao Zhang, Hongwei Li, et al. Chinese Space Science and Technology, 2022, 42(4), 102.
107 Xia Jinjun, Li Jie, Zhang Yumeng, et al. Materials Reports, 2021, 35(11), 11197 (in Chinese).
夏进军, 李洁, 张雨萌, 等. 材料导报, 2021, 35(11), 11197.
108 Yin Z, Tang Z, Zhang Q, et al. Journal of Electronics & Information Technology, 2020, 42(6), 1355.
109 Li R, Li W, Zhou Y, et al. Acta Biomaterialia, 2024, 177, 377.
110 Yu Z J, Xiao M S, Hao P, et al. Chinese Journal of Analytical Chemistry, 2022, 50(6), 850.
111 Zhai Z, Wu L, Jiang H. Applied Physics Reviews, 2021, 8(4), 041319.
112 Zhan P, Jiang Q, Wang Z G, et al. Chemmedchem, 2014, 9(9), 2013.
113 Ke Guoliang, Yang Chaoyong, Zhang Xiaobing, et al. In:The 10th National Conference on Chemical Biology. Wuhan, China, 2017, pp. 169 (in Chinese).
柯国梁, 杨朝勇, 张晓兵, 等. 第十届全国化学生物学学术会议. 武汉, 2017, pp. 169.
114 Kemper U, Weizenmann N, Kielar C, et al. Nano Letters, 2024, 24(8), 2429.
115 Zhan P, Peil A, Jiang Q, et al. Chemical Reviews, 2023, 123(7), 3976.
116 Zhang H Z, Zhang Z Q, Wang F, et al. Acta Physico-Chimica Sinica, 2017, 33(8), 1520.
117 Zhang L, Ma X, Wang G, et al. Nano Today, 2021, 39, 101154.
118 Zhao G, Guo Q. Advanced Materials Interfaces, 2024, 11(28), 2400162.
119 Zhang W B. Acta Polymerica Sinica, 2021, 52(4), 335.
120 Zhang Y, Xu L, Chen G, et al. Chinese Space Science and Technology, 2022, 42(4), 129.
121 Zhang Z, Tian Z, Mei Y, et al. Materials Science & Engineering R-Reports, 2021, 145, 100621.
122 Chen Y, Li X, Jiang L, et al. Applied Physics Letters, 2024, 124(16), 160501.
123 Liu Z, Wang Z, Guckel J, et al. Small, 2024, 20(36), 2310955.
124 Zhu Y, Schenk M, Filipov E T. Applied Mechanics Reviews, 2022, 74(3), 030801.
125 Dong Na, Cheng Xueli, Meng Fanjing, et al. Journal of Henan Institute of Technology, 2021, 29(2), 47 (in Chinese).
董娜, 程雪利, 孟凡净, 等. 河南工学院学报, 2021, 29(2), 47.
[1] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[2] 魏彦平, 魏凤春, 朱青松, 刘琦, 郭子涵. 金属-聚合物表面微纳形态的构筑与研究[J]. 材料导报, 2024, 38(19): 23090143-9.
[3] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[4] 张毅, 韩昭, 白园蕊, 鲍艳, 马建中, 叶楠. 基于聚苯乙烯模板的金纳米碗结构的制备及二次电子发射特性[J]. 材料导报, 2023, 37(7): 21060137-5.
[5] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[6] 周裕杰, 蔡高峰, 董建峰. 介质材料的有序微纳结构及其显色研究进展[J]. 材料导报, 2022, 36(20): 20100034-9.
[7] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[8] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[9] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[10] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[11] 张鹏飞, 赖小明, 洪长青, 杨雷, 张玉生, 梁龙, 董薇, 刘峰, 马彬, 刘佳, 陈维强, 张璇, 陶积柏. 抗氧化三维纤维增强酚醛气凝胶的性能[J]. 材料导报, 2021, 35(16): 16155-16159.
[12] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[13] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[14] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[15] 李大玉, 张文韬, 张超. 不同种类金属掺杂改性TiO2材料光催化性能的研究进展[J]. 材料导报, 2019, 33(23): 3900-3907.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed