Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23070104-9    https://doi.org/10.11896/cldb.23070104
  高分子与聚合物基复合材料 |
基于废弃茄科植物的纳米铁/生物炭制备及其对含铬(Ⅵ)废水的吸附净化研究
桂超1, 宋晨浩1, 钱文敏2, 刘泽3, 张伟1, 文瀚1, 陈玉保1,*
1 云南师范大学能源与环境科学学院,昆明 650500
2 云南省生态环境工程评估中心,昆明 650228
3 云南中烟工业有限责任公司技术中心,昆明 650231
Preparation of Nano-Iron/Biochar Based on Waste Solanaceae Plants and Its Adsorption and Purification of Chromium(Ⅵ)-Containing Wastewater
GUI Chao1, SONG Chenhao1, QIAN Wenmin2, LIU Ze3, ZHANG Wei1, Bounheng PANOUVONG1,
CHEN Yubao1,*
1 School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
2 Yunnan Appraisal Center for Ecological and Environmental Engineering, Kunming 650228, China
3 R & D Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
下载:  全 文 ( PDF ) ( 24187KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用农业废弃物烟梗为原料,选用两种改性方法制备改性生物炭,对比前体混合法和共沉淀法制备的生物炭对铬的吸附效果。利用SEM、EDS、FT-IR、BET、XRD、TEM对生物炭进行表征。探究反应pH、反应时间、Cr(Ⅵ)初始浓度、生物炭添加量等单因素对生物炭吸附效果的影响,同时利用动力学模型和等温吸附模型等拟合参数。结果表明:pH=2时,生物炭对Cr(Ⅵ)的吸附效果最好,反应时间为4 h时对Cr(Ⅵ)的吸附接近饱和,Cr(Ⅵ)初始浓度越低吸附效果越好,生物炭添加量在0.1 g时吸附效果接近饱和更利于节约成本。Fe2SO4改性的生物炭对Cr(Ⅵ)的去除率高达97%,吸附过程更接近准二级动力学模型和Langmuir模型,吸附理论值也更接近实际值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂超
宋晨浩
钱文敏
刘泽
张伟
文瀚
陈玉保
关键词:  烟梗废弃物  纳米铁改性  动力学  生物炭    
Abstract: Using agricultural waste tobacco stems as raw materials, two modified methods were selected to prepare modified biochar, and the adsorption effects of biochar prepared by precursor mixing method and co-precipitation method on chromium were compared. SEM, EDS, FT-IR, BET, XRD, TEM were used to characterize biochar. The effects of single factors such as reaction pH, reaction time, initial concentration of Cr(Ⅵ) ions, and biochar addition on the adsorption effect of biochar were explored, and the fitting parameters such as kinetic model and isothermal adsorption model were used. The results showed that when pH=2, the adsorption effect was the best, the reaction time was close to saturation at 4 h, the lower the initial concentration of Cr(Ⅵ) ions, the better the adsorption effect, and the adsorption effect was close to saturation when the biochar addition amount was 0.1 g, which was more conducive to cost saving. The removal rate of Fe2SO4 modified biochar can be as high as 97%, the adsorption process is closer to the quasi-second-order kinetic model and the Langmuir model, and the theoretical value of adsorption is closer to the actual value.
Key words:  tobacco stem waste    nano iron modification    dynamics    biochar
发布日期:  2024-10-12
ZTFLH:  X703  
基金资助: 云南省基础研究计划重点项目(202301AS070011);云南中烟工业有限责任公司科技重点项目(2022GY03);云南省科技人才与平台计划(202105AC160058;202205AD160048);云南省院士专家工作站(202205AF150024); 昆明市国际(对外)科技合作基地(GHJD-2020026)
通讯作者:  *陈玉保,通信作者,云南师范大学能源与环境科学学院(太阳能研究所)教授、博士研究生导师。1997年苏州科技大学环境工程专业本科毕业,2001年昆明理工大学环境工程专业硕士和博士毕业,2007毕业后到云南师范大学能源与环境科学学院(太阳能研究所)从事科研、教学和管理工作至今。目前主要从事农业生物环境与能源工程、生物质开发与利用、环境工程的研究工作。发表论文100余篇,包括Energy、Fuel、Global Change Biology Bioenergy、Industrial Crops and Products等。chenyubao@ynnu.edu.cn   
作者简介:  桂超,2020年6月于四川旅游学院获得工学学士学位。现为云南师范大学能源与环境科学学院硕士研究生,在陈玉保教授的指导下进行研究。目前主要研究领域为生物质利用。
引用本文:    
桂超, 宋晨浩, 钱文敏, 刘泽, 张伟, 文瀚, 陈玉保. 基于废弃茄科植物的纳米铁/生物炭制备及其对含铬(Ⅵ)废水的吸附净化研究[J]. 材料导报, 2024, 38(18): 23070104-9.
GUI Chao, SONG Chenhao, QIAN Wenmin, LIU Ze, ZHANG Wei, Bounheng PANOUVONG,
CHEN Yubao. Preparation of Nano-Iron/Biochar Based on Waste Solanaceae Plants and Its Adsorption and Purification of Chromium(Ⅵ)-Containing Wastewater. Materials Reports, 2024, 38(18): 23070104-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070104  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23070104
1 Wen X, Ling L, Jiang S Z, et al. Environmental Monitoring and Assessment, 2023, 195(5), 602.
2 Jeremiah J, Laura S, Eenheng T G, et al. Environmental Science & Technology, 2006, 40(22), 7060.
3 Chen T, Zhou Z, Xu S, et al. Bioresource Technology, 2015, 190, 388.
4 Zhong X, Lu Z, Liang W, et al. Journal of Hazardous Materials, 2020, 393, 122353.
5 Yang L X, Yang Z, Jia Q, et al. Mineral Processing and Extractive Metallurgy Review, 2017, 38(6), 411.
6 Narayanan M, Srinivasan B, Shanmugasundaram S, et al. Environmental Research, 2022, 213, 542.
7 San W C, HaJin L. Carbohydrate Polymers, 2022, 98, 120028.
8 Xu J, Cao Z, Zhang Y, et al. Chemosphere, 2018, 195, 254-261.
9 Ganzoury A M, Chidiac C, Kurtz J, et al. Journal of Hazardous Materials, 2020, 393, 123212.
10 Fiyadh S S, AlSaadi A M, Jaafar Z W, et al. Journal of Cleaner Production, 2019, 230, 116225.
11 Mariana M, Khalil A H, Eenlma M M, et al. Journal of Water Process Engineering, 2021, 43, 254.
12 Qing D Q, Xian W, Li W C, et al. RSC Advances, 2018, 8(4), 1942.
13 Asikin N A, Norharyati W S W, Farhana A, et al. Journal of Chemical Technology & Biotechnology, 2022, 98(1), 282.
14 Lu D, Xin Y C, Jin J L, et al. Journal of Water Process Engineering, 2023, 53, 104265.
15 Akpinar D, Ozlem S H, Erdogan G, et al. LWT-Food Science & Technology, 2010, 43(1), 119.
16 Lin Y, Yan W, Sheng K. Waste Management & Research, 2016, 34(8), 793.
17 Agrupis S, Maekawa E, Suzuki K, et al. Journal of Wood Science, 2000, 46(3), 222.
18 Sun D, Sun S, Wang B, et al. Bioresource Technology, 2020, 297, 122471.
19 Singh M, Gupta A, Pal V, et al. Biomass Conversion and Biorefinery, 2024, 14(1), 553.
20 Sonia Y, Harita K, Suman S, et al. Applied Physics A, 2023, 129(2), 255.
21 Ren J, Li N, Li L, et al. Bioresource Technology, 2015, 178, 119.
22 Jiang Y, Li A, Deng H, et al. Bioresource Technology, 2019, 276, 183.
23 GB/T 7466-1987, Water Quality-Determination of Total Chromium, The State Environmental Protection Administration(in Chinese).
GB/T 7466-1987, 水质 总铬的测定. 国家环境保护局.
24 Kong X R, Liu X R, Pi J C, et al. Nvironmental Science and Pollution Research International, 2017, 24(7), 6679.
25 Cui Y, Masud A, Aich N, et al. Journal of Hazardous Materials, 2019, 368, 477.
26 Salih H, Suhaib S, Ghosh Tushar K, et al. Environmental Processes, 2018, 5(1), 23.
27 Xiang Q, Lv K, Yu J, et al. Applied Catalysis B, Environmental, 2010, 96(3), 557.
28 Zhao Q S, Xu T, Song X P, et al. Frontiers in Bioengineering and Biotechnology, 2021, 9, 769667
[1] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[2] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[3] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[4] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[5] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[6] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[7] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[8] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[9] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[10] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[11] 罗振敏, 张春艳, 杨勇. 氨纶防黄剂粉尘的着火特性分析[J]. 材料导报, 2024, 38(11): 22100095-8.
[12] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[13] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[14] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[15] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed