Complex Crystallization Kinetics Behavior of Finemet-type Amorphous Alloy
WANG Pu1, ZHU Zhengqu1,2, DONG Yannan1, YANG Dong2, PANG Jing2, ZHANG Jiaquan1,*
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Qingdao Yunlu Advanced Materials Technology Co., Ltd., Qingdao 266232, Shandong, China
Abstract: The Finemet-type multi-component alloy is one of the most commonly used nanocrystalline soft magnetic materials. In-depth understanding of its crystallization mechanism is essential for better modification of the preparation process, which is of great importance for obtaining target nanocrystalline alloys with stable and excellent soft magnetic properties. Therefore, the non-isothermal crystallization behavior of Fe74Si14.5B7.5Nb3Cu1(at%) amorphous system was studied by differential scanning calorimeter (DSC) under different heating rates in this study. Firstly, the activation energy Eα for the crystallization process of Fe74Si14.5B7.5Nb3Cu1 amorphous system was obtained by the typical iso-conversional methods of Kissinger-Akahira-Sinose(KAS), Flyn-Wall-Ozawa(FWO), Starik and Boswell. After that, the preexponential factor A was derived by the compensation effect method, which led to the numerical reconstruction of the reaction model f(α) and the Avrami index n(α). The results showed that the crystallization of Fe74Si14.5B7.5Nb3Cu1 amorphous alloy was only relatively consistent with the reaction mechanism model of dimensional diffusion, but did not fully close to any present theoretical models, indicating that the crystallization process was a complex reaction involving multiple reaction models. The nucleation rate of crystals rapidly reached a decreasing stage (n(α)=2.3) from the increasing stage at the beginning of crystallization(α<0.2) and slowly decreased to 0(n(α)=1.5) at 0.2<α<0.5. Finally, the crystals continued to grow on the basis of existing grains (n(α)<1.5) at the end of crystallization(α>0.5), which was manifested as the three-dimensional growth with a conti-nuously decreasing nucleation rate during the entire crystallization process. The crystallization of Fe74Si14.5B7.5Nb3Cu1 amorphous alloy was a complex process dominated by three-dimensional diffusion, which was jointly controlled by multiple crystallization mechanisms and coordinated by multiple reaction models.
通讯作者:
*张家泉,北京科技大学冶金与生态工程学院教授、博士研究生导师。1993年在清华大学获得工学博士学位,1993—1996年获中国博士后科学基金有色总公司冠名荣誉资助在北京科技大学冶金系和宝山钢铁公司从事博士后研究,1996起在北京科技大学工作,1998—2000年获德国普朗克学会奖研金作为高级访问学者赴德国钢铁协会马普冶金研究所工作,其间被马普所破例改聘为联邦合同研究员,2001年任北京科技大学冶金与生态工程学院教授工作至今。目前主要从事特殊钢与特种合金材料浇注与凝固研究工作。发表论文200余篇,包括《科学通报》、Materials and Design、Materials Science and Engineering:A、Metallurgical and Materials Tran-sactions A、Metallurgical and Materials Transactions B等。jqzhang@metall.ustb.edu.cn
作者简介: 王璞,北京科技大学冶金与生态工程学院讲师、博士后。2016年在北京科技大学获得学士学位,2022年在北京科技大学获得博士学位。目前主要从事特殊钢与特种合金材料浇注与凝固研究工作。发表论文40余篇,包括Journal of Materials Research and Technology、Journal of Non-Crystalline So-lids、Metallurgical and Materials Transactions B、Steel Research International、Ironmaking and Steelmaking、Materials、Metals等。
引用本文:
王璞, 朱争取, 董延楠, 杨东, 庞靖, 张家泉. Finemet型非晶合金的复杂晶化动力学行为[J]. 材料导报, 2024, 38(3): 22100118-7.
WANG Pu, ZHU Zhengqu, DONG Yannan, YANG Dong, PANG Jing, ZHANG Jiaquan. Complex Crystallization Kinetics Behavior of Finemet-type Amorphous Alloy. Materials Reports, 2024, 38(3): 22100118-7.
1 Yoshizawa Y, Oguma S, Yamauchi K. Journal of Applied Physics, 1988, 64(10), 6044. 2 Guo L, Zhu Q K, Chen Z, et al. Acta Metallurgica Sinica, 2022, 58(6), 799 (in Chinese). 郭璐, 朱乾科, 陈哲, 等. 金属学报, 2022, 58(6), 799. 3 Köster U, Herold U, Güntherodt H J, et al. Glassy Metals, 1981, 46, 225. 4 Herzer G. IEEE Transactions on Magnetics, 1990, 26(5), 1397. 5 Ramasamy P, Stoica M, Taghvaei A H, et al. Journal of Applied Phy-sics, 2016, 119(7), 073908. 6 Hono K, Hiraga K, Wang Q, et al. Surface Science, 1992, 266(1-3), 385. 7 Huang X, Ding S, Wang Z, et al. Journal of Non-Crystalline Solids, 2022, 580, 121388. 8 Bai F, Dong Y, Xie L, et al. Journal of Materials Science, 2021, 56(15), 1. 9 Suzuki K, Parsons R, Zang B, et al. Journal of Alloys and Compounds, 2018, 735, 613. 10 Köster U, Meinhardt J. Materials Science and Engineering:A, 1994, 178(1-2), 271. 11 Shivaee H A, Castellero A, Rizzi P, et al. Metals and Materials International, 2013, 19, 643. 12 Li J F, Li W. Acta Metallurgica Sinica, 2022, 58(4), 457 (in Chinese). 李金富, 李伟. 金属学报, 2022, 58(4), 457. 13 Hu R Z, Shi Q Z. Thermal analysis kinetics(2nd Ed), Science Press, China, 2008, pp.2 (in Chinese). 胡荣祖, 史启祯. 热分析动力学(第二版), 科学出版社, 2008, pp.2. 14 Vyazovkin S. Modern isoconversional kinetics:from misconceptions to advances-science direct, Elsevier, USA, 2018,pp.131. 15 Zhong X X, Hou F, Cao W H, et al. Journal of China Coal Society, 2021, 46(6), 11 (in Chinese). 仲晓星, 侯飞, 曹威虎, 等. 煤炭学报, 2021, 46(6), 11. 16 Akahira T, Sunose T. Research Report Chiba Institute Technology, 1971, 16, 22. 17 Ozawa T. Bulletin of the Chemical Society of Japan, 1965, 38(11), 1881. 18 Starink M J. Thermochimica Acta, 2003, 404(1-2), 163. 19 Boswell P G. Thermochimica Acta, 1980, 18(2), 353. 20 Guo L, Zhu Q K, Chen Z, et al. Journal of Non-crystalline Solids, 2022, 577, 121310. 21 Böhmer R, Ngai K L, Angell C A, et al. The Journal of Chemical Phy-sics, 1999, 99, 4201. 22 Li H, Wang A, Liu T, et al. Materials Today, 2021, 42, 49. 23 Coats A W, Redfern J P. Nature, 1964, 201(4914), 68. 24 Málek J. Thermochimica Acta, 1995, 267, 61. 25 Peng C, Chen Z H, Zhao X Y, et al. Journal of Non-crystalline Solids, 2014, 405, 7. 26 Christian J W. The theory of transformations in metals and alloys, Pergamon Press, UK, 2002, pp.529.