Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22100118-7    https://doi.org/10.11896/cldb.22100118
  金属与金属基复合材料 |
Finemet型非晶合金的复杂晶化动力学行为
王璞1, 朱争取1,2, 董延楠1, 杨东2, 庞靖2, 张家泉1,*
1 北京科技大学冶金与生态工程学院,北京 100083
2 青岛云路先进材料技术股份有限公司,山东 青岛266232
Complex Crystallization Kinetics Behavior of Finemet-type Amorphous Alloy
WANG Pu1, ZHU Zhengqu1,2, DONG Yannan1, YANG Dong2, PANG Jing2, ZHANG Jiaquan1,*
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Qingdao Yunlu Advanced Materials Technology Co., Ltd., Qingdao 266232, Shandong, China
下载:  全 文 ( PDF ) ( 6936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Finemet型铁基多元合金是目前应用极广泛的纳米晶软磁材料之一。深入认识其形成过程的晶化动力学特性,对更好地调控制备工艺以获得稳定且软磁性能更优的目标纳米晶具有重要意义。为此,通过差示扫描量热仪(Differential scanning calorimeter,DSC)在不同升温速率的条件下研究了Fe74Si14.5B7.5Nb3Cu1(原子分数,%)非晶的非等温晶化行为,首先利用Kissinger-Akahira-Sinose(KAS)、Flyn-Wall-Ozawa(FWO)、Starik和Boswell这几种典型的等转化率法求得Fe74Si14.5B7.5Nb3Cu1合金的晶化过程激活能Eα,之后采用补偿效应法得出指前因子A,从而实现了反应模型f(α)的数值重建和Avrami指数n(α)的求解。结果表明,Fe74Si14.5B7.5Nb3Cu1非晶合金的晶化仅较接近维度扩散的反应机理模型,但不完全符合现有任何理论模型,是一个涉及多个反应模型的复杂反应。晶体形核速率在晶化初期(α<0.2)由增长阶段快速达到降低阶段(n(α)=2.3),而在0.2<α<0.5时缓慢降至零(n(α)=1.5),之后在晶化末期(α>0.5),晶体在已有晶粒的基础上继续长大(n(α)<1.5),整个晶化过程为形核速率持续降低的三维生长。Fe74Si14.5B7.5Nb3Cu1非晶合金的晶化是一个由三维扩散主导的多个晶化机制共同控制、多个反应模型协同参与的复杂过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王璞
朱争取
董延楠
杨东
庞靖
张家泉
关键词:  Finemet型合金  晶化行为  等转化率法  反应模型  形核速率  晶化机制    
Abstract: The Finemet-type multi-component alloy is one of the most commonly used nanocrystalline soft magnetic materials. In-depth understanding of its crystallization mechanism is essential for better modification of the preparation process, which is of great importance for obtaining target nanocrystalline alloys with stable and excellent soft magnetic properties. Therefore, the non-isothermal crystallization behavior of Fe74Si14.5B7.5Nb3Cu1(at%) amorphous system was studied by differential scanning calorimeter (DSC) under different heating rates in this study. Firstly, the activation energy Eα for the crystallization process of Fe74Si14.5B7.5Nb3Cu1 amorphous system was obtained by the typical iso-conversional methods of Kissinger-Akahira-Sinose(KAS), Flyn-Wall-Ozawa(FWO), Starik and Boswell. After that, the preexponential factor A was derived by the compensation effect method, which led to the numerical reconstruction of the reaction model f(α) and the Avrami index n(α). The results showed that the crystallization of Fe74Si14.5B7.5Nb3Cu1 amorphous alloy was only relatively consistent with the reaction mechanism model of dimensional diffusion, but did not fully close to any present theoretical models, indicating that the crystallization process was a complex reaction involving multiple reaction models. The nucleation rate of crystals rapidly reached a decreasing stage (n(α)=2.3) from the increasing stage at the beginning of crystallization(α<0.2) and slowly decreased to 0(n(α)=1.5) at 0.2<α<0.5. Finally, the crystals continued to grow on the basis of existing grains (n(α)<1.5) at the end of crystallization(α>0.5), which was manifested as the three-dimensional growth with a conti-nuously decreasing nucleation rate during the entire crystallization process. The crystallization of Fe74Si14.5B7.5Nb3Cu1 amorphous alloy was a complex process dominated by three-dimensional diffusion, which was jointly controlled by multiple crystallization mechanisms and coordinated by multiple reaction models.
Key words:  Finemet-type alloy    crystallization behavior    iso-conversional method    reaction model    nucleation rate    crystallization mechanism
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG139  
基金资助: 山东省重点研发计划(2022CXGC020308)
通讯作者:  *张家泉,北京科技大学冶金与生态工程学院教授、博士研究生导师。1993年在清华大学获得工学博士学位,1993—1996年获中国博士后科学基金有色总公司冠名荣誉资助在北京科技大学冶金系和宝山钢铁公司从事博士后研究,1996起在北京科技大学工作,1998—2000年获德国普朗克学会奖研金作为高级访问学者赴德国钢铁协会马普冶金研究所工作,其间被马普所破例改聘为联邦合同研究员,2001年任北京科技大学冶金与生态工程学院教授工作至今。目前主要从事特殊钢与特种合金材料浇注与凝固研究工作。发表论文200余篇,包括《科学通报》、Materials and Design、Materials Science and Engineering:A、Metallurgical and Materials Tran-sactions A、Metallurgical and Materials Transactions B等。jqzhang@metall.ustb.edu.cn   
作者简介:  王璞,北京科技大学冶金与生态工程学院讲师、博士后。2016年在北京科技大学获得学士学位,2022年在北京科技大学获得博士学位。目前主要从事特殊钢与特种合金材料浇注与凝固研究工作。发表论文40余篇,包括Journal of Materials Research and Technology、Journal of Non-Crystalline So-lids、Metallurgical and Materials Transactions B、Steel Research International、Ironmaking and Steelmaking、Materials、Metals等。
引用本文:    
王璞, 朱争取, 董延楠, 杨东, 庞靖, 张家泉. Finemet型非晶合金的复杂晶化动力学行为[J]. 材料导报, 2024, 38(3): 22100118-7.
WANG Pu, ZHU Zhengqu, DONG Yannan, YANG Dong, PANG Jing, ZHANG Jiaquan. Complex Crystallization Kinetics Behavior of Finemet-type Amorphous Alloy. Materials Reports, 2024, 38(3): 22100118-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100118  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22100118
1 Yoshizawa Y, Oguma S, Yamauchi K. Journal of Applied Physics, 1988, 64(10), 6044.
2 Guo L, Zhu Q K, Chen Z, et al. Acta Metallurgica Sinica, 2022, 58(6), 799 (in Chinese).
郭璐, 朱乾科, 陈哲, 等. 金属学报, 2022, 58(6), 799.
3 Köster U, Herold U, Güntherodt H J, et al. Glassy Metals, 1981, 46, 225.
4 Herzer G. IEEE Transactions on Magnetics, 1990, 26(5), 1397.
5 Ramasamy P, Stoica M, Taghvaei A H, et al. Journal of Applied Phy-sics, 2016, 119(7), 073908.
6 Hono K, Hiraga K, Wang Q, et al. Surface Science, 1992, 266(1-3), 385.
7 Huang X, Ding S, Wang Z, et al. Journal of Non-Crystalline Solids, 2022, 580, 121388.
8 Bai F, Dong Y, Xie L, et al. Journal of Materials Science, 2021, 56(15), 1.
9 Suzuki K, Parsons R, Zang B, et al. Journal of Alloys and Compounds, 2018, 735, 613.
10 Köster U, Meinhardt J. Materials Science and Engineering:A, 1994, 178(1-2), 271.
11 Shivaee H A, Castellero A, Rizzi P, et al. Metals and Materials International, 2013, 19, 643.
12 Li J F, Li W. Acta Metallurgica Sinica, 2022, 58(4), 457 (in Chinese).
李金富, 李伟. 金属学报, 2022, 58(4), 457.
13 Hu R Z, Shi Q Z. Thermal analysis kinetics(2nd Ed), Science Press, China, 2008, pp.2 (in Chinese).
胡荣祖, 史启祯. 热分析动力学(第二版), 科学出版社, 2008, pp.2.
14 Vyazovkin S. Modern isoconversional kinetics:from misconceptions to advances-science direct, Elsevier, USA, 2018,pp.131.
15 Zhong X X, Hou F, Cao W H, et al. Journal of China Coal Society, 2021, 46(6), 11 (in Chinese).
仲晓星, 侯飞, 曹威虎, 等. 煤炭学报, 2021, 46(6), 11.
16 Akahira T, Sunose T. Research Report Chiba Institute Technology, 1971, 16, 22.
17 Ozawa T. Bulletin of the Chemical Society of Japan, 1965, 38(11), 1881.
18 Starink M J. Thermochimica Acta, 2003, 404(1-2), 163.
19 Boswell P G. Thermochimica Acta, 1980, 18(2), 353.
20 Guo L, Zhu Q K, Chen Z, et al. Journal of Non-crystalline Solids, 2022, 577, 121310.
21 Böhmer R, Ngai K L, Angell C A, et al. The Journal of Chemical Phy-sics, 1999, 99, 4201.
22 Li H, Wang A, Liu T, et al. Materials Today, 2021, 42, 49.
23 Coats A W, Redfern J P. Nature, 1964, 201(4914), 68.
24 Málek J. Thermochimica Acta, 1995, 267, 61.
25 Peng C, Chen Z H, Zhao X Y, et al. Journal of Non-crystalline Solids, 2014, 405, 7.
26 Christian J W. The theory of transformations in metals and alloys, Pergamon Press, UK, 2002, pp.529.
[1] 殷光吉, 单紫琪, 温小栋, 邵璟璟, 汤玉娟, 王楠. 干湿交替下损伤劣化混凝土内硫酸根离子二维传输行为的数值模拟[J]. 材料导报, 2024, 38(19): 24010080-6.
[2] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[3] 王晓明, 文舒, 杨柏俊, 韩国峰, 朱胜, 李宇中. 不同热流流场下低温超音速喷涂Al基金属玻璃粉体的晶化行为[J]. 材料导报, 2019, 33(22): 3795-3800.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed