Please wait a minute...
材料导报  2020, Vol. 34 Issue (24): 24165-24169    https://doi.org/10.11896/cldb.20020086
  高分子与聚合物基复合材料 |
具有螺旋结构的PEO/PHB核壳超细纤维的制备及表征
杜江华, 杨婷婷, 郭生伟, 陈诗华, 喻迎春
北方民族大学材料科学与工程学院,工业废弃物循环利用及先进材料国际科技合作基地;北方民族大学高分子材料及制造技术重点实验室,银川750021
Preparation and Characterization of Core (PEO)-Shell (PHB) Microfiber with Helical Structure
DU Jianghua, YANG Tingting, GUO Shengwei, CHEN Shihua, YU Yingchun
International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced Materials, School of Materials Science & Engineering, North Minzu University; Key Laboratory of Polymer Materials and Manufacturing Technology, North Minzu University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 7532KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三氯甲烷为溶剂,聚β-羟基丁酸酯(PHB)为壳层纺丝液,聚氧乙烯(PEO)为核层纺丝液,采用同轴静电纺丝法制备了具有螺旋结构的PEO/PHB核壳超细纤维,并通过透射电镜(TEM)、全反射傅里叶变换红外光谱仪(ATR-FTIR)、扫描电镜(SEM)、差示扫描量热仪(DSC)、热重分析仪(TGA)对纤维形貌、组成和热性能进行了表征。结果表明:调控纺丝工艺条件,可制备出光滑无孔、螺旋无孔、螺旋多孔的PEO/PHB核壳超细纤维;当纺丝温度为35 ℃、电压为14 kV、推注速度为0.03 mm/min、接收距离为12 cm、滚筒转速为50 r/min时,可获得直径分布均匀的多孔螺旋结构的PEO/PHB核壳超细纤维;多孔螺旋结构的PEO/PHB核壳超细纤维中PHB组分的起始分解温度和终止分解温度较纯PHB纤维有所提高,热分解速率变化不明显,而PEO组分的起始分解温度较纯PEO纤维有所提高,热分解速率降低,终止分解温度变化不明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜江华
杨婷婷
郭生伟
陈诗华
喻迎春
关键词:  聚氧乙烯  聚β-羟基丁酸酯  螺旋结构  同轴电纺    
Abstract: Solutions of two biodegradable polymers, polyoxyethylene (PEO) and poly(β-hydroxybutyrate) (PHB), were individually delivered to the inner and outer channel of a coaxial-tube spinneret for electrospinning to prepare helical structured core-shell microfibers. The morphology, crystallinity and thermal properties of the fibers were characterized by TEM, ATR-FTIR, SEM, DSC and TGA, respectively. The results show that: The core-shell microfibers with smooth, non-porous and porous helix can be obtained by controlling the spinning process. Under electrospinning conditions of temperature 35 ℃, the voltage 14 kV, injection speed 0.03 mm/min, receiving distance 12 cm, drum speed 50 r/min, the core-shell microfibers with evenly distributed diameter and porous helical structures were fabricated. The starting and termination decomposition temperature of the PHB component in the core-shell microfibers of the porous helical structure were higher than that of the pure PHB fibers, and the change of the thermal decomposition rate was not obvious, while the initial decomposition temperature of the PEO component was higher than that of the pure PEO fibers, the thermal decomposition rate decreased, and the temperature change of the termination decomposition was not obvious.
Key words:  polyoxyethylene    poly (β-hydroxybutyrate)    helical structure    coaxial electrospinning
               出版日期:  2020-12-25      发布日期:  2020-12-24
ZTFLH:  TQ342  
基金资助: 宁夏自然科学基金(2019AAC03109);宁夏高等学校科学技术研究项目(NGY2017146);北方民族大学研究生创新项目(YCX19101);北方民族大学引进人员科研启动基金
通讯作者:  jianghua@nun.edu.cn   
作者简介:  杜江华,北方民族大学,副教授。2014年12月毕业于西北工业大学,材料学博士。2007年至今在北方民族大学材料学院工作,主要从事生物可降解高分子材料的改性及成型的研究。
杨婷婷,2013年6月毕业于北方民族大学,获得工学学士学位,2017年9月至今在北方民族大学攻读硕士研究生,主要从事PHB基多孔超细纤维的制备及性能研究。
引用本文:    
杜江华, 杨婷婷, 郭生伟, 陈诗华, 喻迎春. 具有螺旋结构的PEO/PHB核壳超细纤维的制备及表征[J]. 材料导报, 2020, 34(24): 24165-24169.
DU Jianghua, YANG Tingting, GUO Shengwei, CHEN Shihua, YU Yingchun. Preparation and Characterization of Core (PEO)-Shell (PHB) Microfiber with Helical Structure. Materials Reports, 2020, 34(24): 24165-24169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020086  或          http://www.mater-rep.com/CN/Y2020/V34/I24/24165
1 Li Wenchao, Shi Lei, Zhou Kui, et al. Journal of Materials Processing Technology, 2019,266, 551.
2 Li C, Huan S Q, Li Q D, et al. Journal of Forestry Engineering, 2017, 2 (2), 107(in Chinese).
李超, 宦思琪, 李庆德,等.林业工程学报, 2017, 2(2), 107.
3 Huang Chien-Lin, Wei Tzu-Hsin, Peng Sheng-Yin, et al. Journal of Applied Polymer Science, DOI: 10.1002/app.48218.
4 Song Jun, Zhang Bowen, Lu Zihan, et al. ACS Applied Materials & Inerfaces, DOI: 10.1021/acsami.9b18083.
5 Yin Anlin, Luo Rifang, Li Jiukai, et al. Colloids and Surfaces B: Bioin-terfaces, 2017, 152, 432.
6 Mahboubeh Maleki, Masoud Latifi, Mohammad Amani-Tehran, et al. Polymer Engineering and Science,2013,53(8), 1770.
7 Chen G, Xu C L, Xu B,et al. Chinese Journal of Pesticide Science, 2019,21 (5-6), 871(in Chinese).
陈歌, 许春丽, 徐播,等.农药学学报,2019, 21(5-6), 871.
8 Subramani Kandhasamy, Sathiamurthi Perumal, Balaraman Madhan, et al. ACS Applied Materials & Inerfaces, 2017, 9,8556.
9 Jing Xiangjin, Qiu Zhaobin. Industrial & Engineering Chemistry Research, 2012, 51,13686.
10 Yang G, Cai Z J. Polymer Bulletin, 2011(3), 26(in Chinese).
杨光,蔡志江.高分子通报,2011(3), 26.
11 Zhou J H, Chen F, Ding D. Science and Technology & Innovation, 2019 (16), 34(in Chinese).
周建华,陈锋,丁玎. 科技与创新,2019(16),34.
12 Meng R J, Wang T J, Weng P Y, et al. Silk Monthly, 2018,55(12),37 (in Chinese).
蒙冉菊,王铁军,翁蒲莹, 等. 丝绸, 2018,55(12),37.
13 Ding W H. Study on the influencing factors of the preparation of spiral nanofibers by composite electrospinning. Master′s Thesis, Donghua University, China, 2016 (in Chinese).
丁文华.复合静电纺制备螺旋纳米纤维影响因素的研究.硕士学位论文, 东华大学, 2016.
14 Wang Z B, Yang W J, Xu M Z,et al.Plastics Manufacture, 2009(7), 76 (in Chinese).
王兆波,杨为家,徐明正, 等.塑料制造, 2009(7),76.
[1] 何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
[2] 康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed