INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress in Preparation of Ti3SiC2 Ceramic Materials |
SUN Guodong*, KANG Kai, XIE Jing, JIA Yan, ZHENG Bin, LYU Longfei, TIAN Qinglai, TANG Yuxing
|
School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China |
|
|
Abstract As an important member of the MAX phase family, titanium silicified carbon Ti3SiC2not only has high temperature resistance and oxidation resistance, but also has excellent electrical conductivity, thermal conductivity and machinability similar to metal. It has shown strong application potential in the fields of electrical contact materials, heat exchanger component materials, lubricating materials and so on, and has become a new ceramic material that attracts much attention. The existing preparation methods of Ti3SiC2 are mainly pressureless sintering, hot pressed sintering, hot isostatic pressure, spark plasma sintering, polymer-derived ceramic, reactive melt infiltration method, molten salt synthesis, chemical vapor deposition, physical vapor deposition, etc. In this paper, the structure and properties of Ti3SiC2 materials are described firstly, and then the preparation methods of Ti3SiC2 ceramic materials at home and abroad are reviewed emphatically. Finally, the application prospect of Ti3SiC2 ceramic materials is prospected.
|
Published:
Online: 2024-10-12
|
|
Fund:This work was financially supported by the National Natural Science Foundation of China (52272034) and the Key Research and Development Project of Shaanxi Province(2021GY-252). |
|
|
1 Liang B Y, Jin S Z, Liu H, et al. Journal of Changchun University of Technology, 2006(1), 52(in Chinese). 梁宝岩, 金松哲, 刘鹤, 等. 长春工业大学学报, 2006(1), 52. 2 Jeitschko W, Nowotny H. Monatshefte Für Chemie-Chemical Monthly, 1967, 98(2), 329. 3 Barsoum M W. Progress in Solid State Chemistry, 2000, 28(1), 201. 4 Ho-Duc L H, EI-Raghy T, Barsoum M W. Journal of Alloys and Compounds, 2003, 350, 303. 5 Zhu D Y, Zhu J Q, Mei B C, et al. Jiangsu Ceramics, 2005, 38(4), 22(in Chinese). 朱达炎, 朱教群, 梅炳初, 等. 江苏陶瓷, 2005, 38(4), 22. 6 Zhu J, Zhang F Z, Xie Y J, et al. Materials Reports, 2021, 35(23), 23025(in Chinese). 朱界, 张方舟, 谢有菊, 等. 材料导报, 2021, 35(23), 23025. 7 Zhang F Y, Zhao L P, Yan S, et al. Ceramics International, 2020, 46 (10), 16298. 8 Zhu J Q, Mei B C, Chen Y L. Materials Science and Engineering, 2001, 4(2), 105(in Chinese). 朱教群, 梅炳初, 陈艳林. 材料科学与工程, 2001, 4(2), 105. 9 Arunajatesan S, Carim A H. Materials Letters, 1994, 20(5), 319. 10 Medvedeva N, Enyashin A, Ivanovskii A. Journal of Structural Chemistry, 2011, 52(4), 785. 11 Zhou Y C, Zhang H B, Liu M Y, et al. Materials Research Innovations, 2004, 8(8), 97. 12 Zhou Y, Sun Z. Materials Research Innovations, 2000, 5(1), 3. 13 Zhou Y, Sun Z. Journal of Physics:Condensed Matter, 2000, 12, L457. 14 Luan S R. The modification of Ti3SiC2 and Ti3C2-basedmaterials and their performance of lithiumion batteries. Ph.D. Thesis, Yanshan University, China, 2022(in Chinese). 栾孙锐. Ti3SiC2和Ti3C2基材料的改性及其锂离子电池性能的研究. 博士学位论文, 燕山大学, 2022. 15 Li S G, Gan Y Q, Xue J X, et al. Aip Advances, 2018, 8(1), 2158. 16 Fan X M, Ma Y Z, Dang X L, et al. Materials, 2020, 13(2), 328. 17 Myhra S, Summers J, Kisi E H. Materials Letters, 1999, 39(1), 6. 18 Ren S F, Meng J H, Wang J B, et al. Tribology Letters, 2010, 37(1), 59. 19 Li S, Xie J, Zhao J, et al. Materials Letters, 2002, 57(1), 119. 20 Li S, Song G M, Yang Z. Journal of the European Ceramic Society, 2012, 32(12), 3435. 21 Gilbert C J, Bloyer D R, Barsoum M W, et al. Scripta Materialia, 2000, 42(8), 761. 22 Pang W K, Low I M, O’Connor B H, et al. Neutron and X-ray Scattering Advancing Materials Research, 2009, 6(1), 243. 23 Oo Z, Low I M, O’Connor B H. Physica B Condensed Matter, 2006, 2(1), 499. 24 Reiffenstein F, Nowotny H, Benesovsky F. Monatshefte Für Chemie, 1996, 97(5), 1428. 25 Racault C, Langlais F, Naslain R. Journal of Materials Science, 1994, 29(13), 3384. 26 Zhang H L, Su R R, Shi L Q, et al. Journal of the European Ceramic Society, 2018, 38(4), 1253. 27 Jeitschko W, Nowotny H. Monatshefte für Chemie-Chemical Monthly, 1967, 98(2), 329. 28 Racault C, Langlais F, Naslain R. Journal of Materials Science, 1994, 29(13), 3384. 29 Yang F, Li C S, Tang H, et al. Chinese Journal of Vacuum Science and Technology, 2012, 32(9), 825(in Chinese). 杨锋, 李长生, 唐华, 等. 真空科学与技术学报, 2012, 32(9), 825. 30 Yang F, Li C S, Tang H, et al. Chines Journal of Inorganic Chemistry, 2012, 28(4), 703(in Chinese). 杨锋, 李长生, 唐华, 等. 无机化学学报, 2012, 28(4), 703. 31 Xue M Q. Порошковая Металлургия, 2014, 498(7), 19. 32 Xu W, Xue M, Bai J. Inorganic Chemicals Industry, 2019, 322(8), 456. 33 Sun Z M, Zou Y, Tada S, et al. Scripta Materialia, 2006, 55(11), 111. 34 Barsoum M W, Farber L, El-Raghy T. Metallurgical and Materials Transactions A, 1999, 30(7), 1727. 35 Barsoum M W, Radovic M. Annual Review of Materials Research, 2011, 41(1), 195. 36 Antti M L, Kero I, Cheng Y B, et al. Ceramics International, 2012, 38(3), 1999. 37 Yuan H D, Yin H F, Pan L Q, et al. Hot Working Technology, 2012, 41(2), 126(in Chinese). 袁蝴蝶, 尹洪峰, 潘丽清, 等. 热加工工艺, 2012, 41(2), 126. 38 Jia H, Yin H F, Yuan H D, et al. Chinese Ceramics, 2019, 55(2), 34(in Chinese). 贾换, 尹洪峰, 袁蝴蝶, 等. 中国陶瓷, 2019, 55(2), 34. 39 El-Raghy T, Zavaliangos A, Barsoum M W, et al. Journal of the American Ceramic Society, 1997, 80(2), 513. 40 El-Raghy T, Barsoum M W, Zavaliangos A, et al. Journal of the American Ceramic Society, 1999, 82(10), 2855. 41 Klemm H, Tanihata K, Miyamoto Y. Journal of Materials Science, 1993, 28(6), 1557. 42 Li J F, Sato F. Journal of Materials Science Letters, 1999, 18(6), 1595. 43 Zhou Y C, Sun Z M. Materials Science and Technology, 2000, 16, 461. 44 Gao N F, Miyamoto, Tanihat Y. Journal of the Society of Materials Science, 1998, 47(10), 994. 45 Ishiyama M. Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40(1), 931. 46 Shon I J, Munir A. Materials Science and Engineering A, 1995, 202(8), 256. 47 Xiong Y, Liu C. Advanced Ceramics, 2016, 37(4), 227(in Chinese). 熊焰, 刘冲. 现代技术陶瓷, 2016, 37(4), 227. 48 Nygen M, Shen Z. Solid State Science, 2003, 5(1), 125. 49 Han R, Pan W, Fang M, et al. High-performance Ceramics IV, 2005, 8(4), 1046. 50 Islak B Y, Ayas E. Ceramics International, 2019, 6(3), 12297. 51 Gao N F, Li J T, Zhang D, et al. Journal of the European Ceramic Society, 2002, 22(13), 2365. 52 Liang B Y. Materials Research Innovations, 2013, 17(7), 448. 53 Zhao X R, Ji T Z, Niu S, et al. Journal of Solid Rocket Technology, 2022, 45(3), 446(in Chinese). 赵晓冉, 季铁正, 牛帅, 等. 固体火箭技术, 2022, 45(3), 446. 54 Zhu S B, Zhang Q, Meng X L, et al. Aerospace Manufacturing Technology, 2019, 3(3), 1(in Chinese). 朱世步, 张强, 孟祥利, 等. 航天制造技术, 2019, 3(3), 1. 55 Luo Y M, Zheng Z M, Mei X N, et al. Materials Chemistry and Physics, 2009, 8(3), 26. 56 Luo Y M, Zhang Z, Wang X, et al. International Journal of Applied Ceramic Technology, 2010, 7(6), 73. 57 Luo Y M, Mei X N, Zheng Z M, et al. Rare Metal Materials and Engineering, 2009, 38(S2), 415(in Chinese). 罗永明, 梅雪凝, 郑知敏, 等. 稀有金属材料与工程, 2009, 38(S2), 415. 58 Yang J, Dong S, Ding Y, et al. International Journal of Applied Ceramic Technology/Functional Ceramics, 2010, 93(8), 2117. 59 Yang J, Zhang X, Zhen W, et al. Ceramics International, 2012, 38(4), 3509. 60 Wang Q. Synthesis and properties of two machinable ceramics Ti3SiC2 and Y4Al2O9. Ph.D. Thesis, Tianjin University, China, 2012(in Chinese). 汪乾. 两种可加工陶瓷Ti3SiC2, Y4Al2O9的合成制备与性能. 博士学位论文, 天津大学, 2012. 61 Wang Q, Hu C, Cai S, et al. International Journal of Applied Ceramic Technology, 2013, 11(5), 911. 62 Li F Z, Zhang H B, Wang Q, et al. Journal of the American Ceramic Society, 2014, 97(9), 2731. 63 Nan B, Yin X, Zhang L, et al. Journal of the American Ceramic Society, 2011, 94(4), 969. 64 Lenz F, Krenkel W. Materials Science and Engineering, 2011, 20(18), 1757. 65 Liu H, Wan H. In:China Aerospace Third Professional Information Network Thirty-seventh Technical Exchange Meeting and the First Joint Conference on Space and Space Power. Xi’an, 2016, pp.699(in Chinese). 刘会, 万红. 中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议. 西安, 2016, pp.699. 66 Liu H. Study on the preparation and phase formation of Ti3SiC2. Master’s Thesis, National University of Defense Technology, China, 2016(in Chinese). 刘会. Ti3SiC2的制备及相形成规律的研究. 硕士学位论文, 国防科学技术大学, 2016. 67 Hosseinizadeh H. Ceramics International, 2020, 46(14), 22208. 68 Fan X, Yin X, Wang L, et al. International Journal of Refractory Metals, 2014, 45(7), 1. 69 Guo X, Yang S Y, Gao L, et al. Chinese Ceramics, 2013, 49(3), 13(in Chinese). 郭学, 杨世源, 高龙, 等. 中国陶瓷, 2013, 49(3), 13. 70 Guo X, Wang J, Yang S, et al. Materials Science Forum, 2017, 898(3), 1611. 71 Cheng B J, Yao C, Huang J T, et al. Advances in Applied Ceramics, 2022, 35(5), 629. 72 Dash A, Sohn Y J, Vaen R, et al. Journal of the European Ceramic Society, 2019, 39(13), 3651. 73 Chen D, Tian X, Wang H, et al. International Journal of Refractory Metals & Hard Materials, 2014, 47, 102. 74 Nan B Y, Yin X W, Zhang L T, et al. Journal of the American Ceramic Society, 2011, 94(4), 969. 75 Ma Y Z, Yin X W, Fan X M, et al. International Journal of Applied Ceramic Technology, 2014, 12(1), 71. 76 Nickl J J, Schweitzer K K, Luxenberg P. Less Common Metals, 1972, 26(4), 335. 77 Fakih H, Jacques S, Berthet M P. Surface and Coatings Technology, 2006, 201(3), 3748. 78 Jacques S, Fakih H. Thin Solid Films, 2010, 518(7), 5071. 79 Lin T C, Hon M H. Ceramics International, 2008, 34(6), 631. 80 Yang G Y. Study on preparation of Ti-Si-C composite coatings by CVD method in TiCl4-CH3SiCl3-H2-Ar system. Master’s Thesis, Central South University, China, 2014(in Chinese). 杨钢宜. TiCl4-CH3SiCl3-H2-Ar体系下CVD法制备Ti-Si-C复合涂层的研究. 硕士学位论文, 中南大学, 2014. 81 Yang G Y, Li G D, Xiong X, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5), 8(in Chinese). 杨钢宜, 李国栋, 熊翔, 等. 粉末冶金材料科学与工程, 2014, 19(5), 8. 82 Zhu J, Mao S J, Liu Y Y, et al. Journal of Materials Science and Engineering, 2022, 40(6), 961(in Chinese). 朱界, 茅思佳, 刘瑶瑶, 等. 材料科学与工程学报, 2022, 40(6), 961. 83 Palmquist J P, Jansson U, Seppänen T, et al. Applied Physics Letters, 2002, 81(5), 835. 84 Liu W H, Hu X Y, Zhang J, et al. Laser & Optoelectronics Progress, 2006, 14(5), 421. 85 Ao Y, Hu S, Hua L, et al. Laser Technology, 2003, 9(3), 47. 86 Eklund P, Palmquist J P, Wilhelmsson O, et al. Tribology Letters, 2004, 17(4), 977. 87 Lange C, Barsoum M W, Schaaf P. Applied Surface Science, 2007, 254(4), 1232. 88 Lange C, Hopfeld M, Wilke M, et al. Physica Status Solidi, 2012, 209(3), 545. 89 Hu J Q, Xie M, Chen J L, et al. Acta Physica Sinica, 2017, 66(5), 57. 90 Zhai H X, Wang C A. Electric Drive for Locomotives, 2003, 13(8), 43(in Chinese). 翟洪祥, 汪长安. 机车电传动, 2003, 13(8), 43. 91 Fu Z Y, Li J B. Beijing Science Press, 2007, 1, 235. 92 Luo Y M, Eishuan L M, Zhou Y C, et al. Corrosion Science, 2006, 48(7), 650. 93 Luo Y M, Eishuan L M, Zhou Y C, et al. Journal of the European Ceramic Society, 2005, 25(3), 1033. 94 Luo Y M, Eishuan L M, Zhou Y C, et al. Journal of the European Ceramic Society, 2003, 23(1), 1957. 95 Qu X H, Zhang L, Wu P F, et al. Materials Science and Technology, 2017, 25(2), 1(in Chinese). 曲选辉, 章林, 吴佩芳, 等. 材料科学与工艺, 2017, 25(2), 1. 96 Zhang X W, Wang M Z, Chen S J. Railway Locomotive & Car, 2021, 41(5), 163(in Chinese). 张兴旺, 王明智, 陈澍军. 铁道机车车辆, 2021, 41(5), 163. 97 He C C. Preparation and properties of Ti3SiC2 new high temperature absorbing material. Master’s Thesis, Xidian University, China, 2014(in Chinese). 何创创. Ti3SiC2新型耐高温吸波材料的制备及性能研究. 硕士学位论文, 西安电子科技大学, 2014. 98 Liu J, Mei B C, Zhu J Q. Jiangsu Ceramics, 2003, 36(3), 9(in Chinese). 刘俊, 梅炳初, 朱教群. 江苏陶瓷, 2003, 36(3), 9. 99 Liu G M, Zhou Y C. The Chinese Journal of Nonferrous Metals, 2002(4), 629(in Chinese). 刘光明, 周延春. 中国有色金属学报, 2002(4), 629. |
|
|
|