POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Effects of Heat Treatment on Multiscale Structures and Mechanical Properties of Wood: a Review |
WANG Xujie, LUO Cuimei, MU Jun*, QI Chusheng*
|
1 Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China 2 Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract Heat treatment is an important method to improve the dimensional stability of wood. At the same time, it will cause changes in the multi-scale structure of wood, and then affect the micro and macro mechanical properties of heat-treated wood. In this paper, the effects of heat treatment on multiscale structures and mechanical properties of wood were summarized from three scales of nanometer, micron, and millimeter. At the nanoscale, the degradation of wood hemicellulose during heat treatment resulted in the destruction of matrix properties as an interfacial coupling agent. The hydroxyl groups of cellulose were esterified with the organic acid produced by the degradation of hemicelluloses, and the intermolecular hydrogen bond and the hydrogen bond connected with hemicelluloses were broken in large numbers, which caused the break of mole-cular chain and weakened the bond strength between hemicelluloses and cellulose. The relative content of lignin changes due to polysaccharide depolymerization, and the self-polycondensation of lignin and the cross-linking reaction with polysaccharide degradation products were important factors for the mechanical properties of the cell wall matrix after heat treatment. At the micron scale, cracks appeared in the intercellular layer of the cell wall of heat-treated wood, and there was a separation between cells. The directional arrangement of the microfibril decreased regularly, the inclination increased, and the mechanical strength of the cell wall broke along the length direction of the microfibril. At the millimeter scale, the early wood and late wood changed from square and round to oval on the transverse section of heat-treated wood, and the early wood cracked more. The cell wall of tracheids and vessels was deformed and cracked on the diameter section. With the increase of heat treatment, the cell wall appeared to vertical axial fracture, pits damage, wood ray cracking, and other phenomena, and a large number of ray parenchyma cells were destroyed, which led to the decrease of the load carrying capacity of wood. The results of this review provide a reference for further study of the mechanism of heat treatment on the structure and mechanical properties of wood.
|
Published:
Online: 2024-10-12
|
|
Fund:This work was financially supported by the National Natural Science Foundation of China (31971589, 31870536). |
|
|
1 Hill C, Altgen M, Rautkari L. Journal of Materials Science, 2021, 56(11), 6581. 2 Lee S H, Ashaari Z, Lum W C, et al. Construction and Building Materials, 2018, 181, 408. 3 Ali M R, Abdullah U H, Ashaari Z, et al. Polymers, 2021, 13(16), 2612. 4 Gu L B, Ding T, Jiang N. Journal of Forestry Engineering, 2019, 4(4), 1(in Chinese). 顾炼百, 丁涛, 江宁. 林业工程学报, 2019, 4(4), 1. 5 Candelier K, Dibdiakova J. Holzforschung, 2021, 75(3), 199. 6 Gao Y L, Xu K, Zhan T Y, et al. Materials Reports, 2022, 36(15), 212 (in Chinese). 高玉磊, 徐康, 詹天翼, 等. 材料导报, 2022, 36(15), 212. 7 Chen K W, Peng H, Jiang J L, et al. Chinese Journal of Wood Science and Technology, 2022, 36(2), 11(in Chinese). 陈凯文, 彭辉, 蒋佳荔, 等. 木材科学与技术, 2022, 36(2), 11. 8 Godinho D, Araujo S D, Quilho T, et al. Forests, 2021, 12(10), 1400. 9 Jirouš-Rajković V, Miklecic J. Advances in Materials Science and Engineering, 2019, 2019, 8621486. 10 Candelier K, Thevenon M F, Petrissans A, et al. Annals of Forest Science, 2016, 73(3), 571. 11 Xing D, Hu J P, Yao L H. Journal of Zhejiang A & F University, 2020, 37(4), 793(in Chinese). 邢东, 胡建鹏, 姚利宏. 浙江农林大学学报, 2020, 37(4), 793. 12 Wu Z X, Chen Y H, Huang J C, et al. World Forestry Research, 2019, 32(1), 59(in Chinese). 吴再兴, 陈玉和, 黄成建, 等. 世界林业研究, 2019, 32(1), 59. 13 Sandberg D, Kutnar A, Karlsson, et al. Wood modification technologies-principles, sustainability, and the need for innovation, CRC Press, Boca Raton, USA, 2021, pp.32. 14 Walker J C F. Primary wood processing, principles and practices(2nd edition), Springer, Dordrecht, 2006, pp.40. 15 Nishimura H, Kamiya A, Nagata T, et al. Scientific Reports, 2018, 8, 6538. 16 Hill C A S. Wood modification, chemical, thermal and other processes, John Wiley & Sons, Hoboken, 2006, pp.25. 17 Fahlen J, Salmen L. Journal of Materials Science, 2003, 38(1), 119. 18 Park Y, Jang S K, Park J H, et al. Journal of Wood Science, 2017, 63(6), 635. 19 Gaff M, Kacik F, Sandberg D, et al. Composite Structures, 2019, 220, 529. 20 Wang D, Lin L Y, Fu F. Cellulose, 2020, 27(8), 4161. 21 Borrega M, Ahvenainen P, Serimaa R, et al. Wood Science and Technology, 2015, 49(2), 403. 22 Zhao L Y, Jiang J H, Lu J X. Cold Regions Science and Technology, 2016, 126, 61. 23 Lin B J, Colon B, Chen W H, et al. Journal of Analytical and Applied Pyrolysis, 2018, 130, 8. 24 Yue K, Lu D, Song X S. Spectroscopy and Spectral Analysis, 2023, 43(3), 848(in Chinese). 岳孔, 陆栋, 宋学松. 光谱学与光谱分析, 2023, 43(3), 848. 25 Bayani S, Taghiyari H R, Papadopoulos A N. Polymers, 2019, 11(10), 1538. 26 Li T, Gu L B. Scientia Silvae Sinicae, 2009, 45(2), 92(in Chinese). 李涛, 顾炼百. 林业科学, 2009, 45(2), 92. 27 Xing D, Wang X Z, Wang S Q. Forests, 2021, 12(8), 968. 28 Alen R, Kotilainen R, Zaman A. Wood Science and Technology, 2002, 36, 163. 29 Yildiz S, Geaer E D, Tildiz U C. Building and Environment, 2006, 41(12), 1762. 30 Salmén L, Burgert I. Holzforschung, 2009, 63(2), 121. 31 Zhang N, Li S, Xiong L M, et al. Modelling and Simulation in Materials Science and Engineering, 2015, 23(8), 085010. 32 Long K Y, Wang D, Lin L Y, et al. Transactions of China Pulp and Paper, 2021, 36(1), 88(in Chinese). 龙克莹, 王东, 林兰英, 等. 中国造纸学报, 2021, 36(1), 88. 33 Hughes M, Hill C, Pfriem A. Holzforschung, 2015, 69(7), 851. 34 Wang C G, Jiang Z H, Fei B H, et al. Journal of Beijing Forestry University, 2012, 34(3), 107(in Chinese). 王传贵, 江泽慧, 费本华, 等. 北京林业大学学报, 2012, 34(3), 107. 35 Wang Q L, Xiao S L, Shi S Q. Bioresources, 2019, 14(3), 5288. 36 Berglund J, Mikkelsen D, Flanagan B M, et al. Nature Communications, 2021, 11(1), 4692. 37 Cabalova I, Kacik F, Lagana R, et al. Bioresources, 2018, 13(1), 157. 38 Salca E A, Hiziroglu S. Materials & Design, 2014, 62, 416. 39 Zhao H X, An Z. China Forest Products Industry, 2012, 39(3), 57(in Chinese). 赵红霞, 安珍. 林产工业, 2012, 39(3), 57. 40 Zhang J, Qi C S, Mu J. Journal of Beijing Forestry University, 2020, 42(10), 137(in Chinese). 张静, 漆楚生, 母军. 北京林业大学学报, 2020, 42(10), 137. 41 Zhang J. Physical and mechanical properties and thermal degradation characteristics of heat-treated Chinese fir. Master’s Thesis, Beijing Forestry University, China, 2021(in Chinese). 张静. 热处理杉木的物理力学性能与热降解特性研究. 硕士学位论文, 北京林业大学, 2021. 42 Zhou H Z. Multiscale modifications on dimensional stability of Popitlus cathayana by alkali lignin. Master’s Thesis, Beijing Forestry University, China, 2018(in Chinese). 周海珍. 碱木质素多尺度提升速生杨木尺寸稳定性研究. 硕士学位论文, 北京林业大学, 2018. 43 Ji Z, Ma J F, Zhang Z H, et al. Industrial Crops and Products, 2013, 47, 212. 44 Salmén L, Stevanic J S, Olsson A M. Holzforschung, 2016, 70(12), 1155. 45 Wang D. Wood fracture mechanisms under longitudinal tensile and bend loading. Ph.D. Thesis, Nanjing Forestry University, China, 2020(in Chinese). 王东. 顺纹拉伸和弯曲作用下的木材破坏机理研究. 博士学位论文, 南京林业大学, 2020. 46 Brosse N, El Hage R, Chaouch M, et al. Polymer Degradation and Stability, 2010, 95(9), 1721. 47 Yin Y F, Berglund L, Salmén L. Biomacromolecules, 2011, 12(1), 194. 48 Tjeerdsma B F, Boonstra M, Pizzi A, et al. Holz als Roh und Werkstoff, 1998, 56(3), 149. 49 Umar I, Zaidon A, Lee S H, et al. Journal of Tropical Forest Science, 2016, 28(1), 88. 50 Gindl W, Gupta H S, Grünwald C. Canadian Journal of Botany, 2002, 80, 1029. 51 Wang Z, Sun B L, Chai Y B, et al. Journal of Forestry Engineering, 2022, 7(3), 67(in Chinese). 王喆, 孙柏玲, 柴宇博, 等. 林业工程学报, 2022, 7(3), 67. 52 Chundawat S P S, Beckham G T, Himmel M E, et al. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 121. 53 Liu Y X. Wood science, China Forestry Publishing House, China, 2012, pp.64(in Chinese). 刘一星. 木材学, 中国林业出版社, 2012, pp.64. 54 Muzamal M, Gamstedt E K, Rasmuson A. Wood Science and Technology, 2017, 51(3), 447. 55 Qin L Z, Lin L Y, Fu F, et al. Journal of Materials Science, 2017, 53(1), 549. 56 Gindl W, Gupta H S, Schöberl, et al. Applied Physics A, 2004, 79, 2069. 57 Brandt B, Zollfrank C, Franke O, et al. Acta Biomaterialia, 2010, 6(11), 4345. 58 Zauer M, Meissner F, Plagge R, Wagenfuhr A. Holzforschung, 2016, 70(2), 137. 59 Barnett J R, Bonham V A. Biological Reviews, 2004, 79(2), 461. 60 Donaldson L, Xu P. Trees-Structure and Function, 2005, 19(6), 644. 61 Qing H, Mishnaevsky L. Mechanics of Materials, 2009, 41(9), 1034. 62 Qing H, Mishnaevsky L. International Journal of Solids and Structures, 2010, 47(9), 1253. 63 Reza M, Bertinetto C, Kesari K K, et al. Scientific Reports, 2019, 9, 3869. 64 Wang N L, Liu W Y, Peng Y. Journal of Materials Science, 2013, 48(14), 5071. 65 Wang N L, Liu W Y, Lai J P. Journal of Materials Science, 2014, 49(5), 1984. 66 Biziks V, Andersons B, Belkova L, et al. Wood Science and Technology, 2013, 47(4), 717. 67 Xing D, Li J, Wang X Z, et al. Industrial Crops and Products, 2016, 87, 142. 68 Kim J S, Gao J, Terziev N, et al. Holzforschung, 2015, 69(5), 603. 69 Chen S. Optimization of strength representation models of thermally modified wood using color parameters and wood cell wall structure response. Master’s Thesis, Beijing Forestry University, China, 2022(in Chinese). 陈爽. 热处理木材颜色对其强度表征模型优化及细胞壁构造响应. 硕士学位论文, 北京林业大学, 2022. 70 Bertaud F, Nolmbom B. Wood Science and Technology, 2004, 38(4), 245. 71 Büyüksari U, As N, Dündar T. Bioresources, 2017, 12(2), 4004. 72 Büyüksari U, As N, Dündar T. Bioresources, 2018, 13(1), 836. 73 Prošek Z, Králík V, Topi J, et al. Acta Polytechnica, 2015, 55(1), 39. 74 Yang Y, Qiu J, Dong C L, et al. Journal of Northwest Forestry University, 2010, 25(4), 181(in Chinese). 杨燕, 邱坚, 董春雷, 等. 西北林学院学报, 2010, 25(4), 181. 75 Jiang J H. Studies on the mechanism and properties of superheated steam heat-treated oak wood. Ph.D. Thesis, Chinese Academy of Forestry, China, 2013(in Chinese). 江京辉. 过热蒸汽处理柞木性质变化规律及机理研究. 博士学位论文, 中国林业科学研究院, 2013. 76 Boonstra M J, Rijsdijk J F, Sander C, et al. Maderas:Ciencia Y Tecnología, 2006, 8(3), 193. 77 Awoyemi L, Jones I P. Wood Science and Technology, 2011, 45(2), 261. 78 Kekkonen P M, Telkki V V, Jokisaari J. Journal of Physical Chemistry C, 2010, 114(43), 18693. 79 Boonstra M J, Rijsdijk J F, Sander C, et al. Maderas: Ciencia Y Tecnología, 2006, 8(3), 209. 80 Feng X H, Chen J Y, Yu S X, et al. European Journal of Wood and Wood Products, 2022, 80(4), 933. |
[1] |
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition[J]. Materials Reports, 2024, 38(9): 22100039-16. |
|
|
|
|