METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Advances in Biological Synthesis of Metal Nanoparticles |
ZHU Fei, WU Zujie, CHENG Minghui, GUAN Jinhua, ZOU Long
|
Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract Metal nanoparticles (MNPs) with small size, high area-volume ratio, excellent reactive activation, unique optical, electrical and thermodynamic properties have become a research hotspot as functional materials in many fields such as catalysis, sensors, clinical diagnosis, medicines, antibacterial agents and environmental remediation. The morphology, size and surface functionalization of MNPs play pivotal roles in their application scopes and performances, thus the development of green, simple and controllable synthesis method for MNPs fabrication is of much importance. The biological synthesis of MNPs is a green route, in which biological organisms and biomolecules bio-reduce or bio-mineralize the metal precursors into MNPs. In general, the reaction condition of biological approach is moderate and energy-efficient without need for expensive instruments or harmful chemicals. Nowadays, the biological synthesis of MNPs has developed into an important branch of nanobiotechnology. Almost all types of microorganisms and various plant tissues have promising potential in either synthesis or processing of MNPs as “nano-factories”. Bacteria, actinomycetes, yeast and fungi can produce MNPs both intracellularly and extracellularly. The formation of MNPs is the reduction or mineralization process catalyzed by enzymes, which is usually forced by the reductive force generated by cell metabolism. The synthesis of MNPs by algae and plant tissue generally employ their extracts containing rich biomacromolecules such as proteins and a variety of small molecule active components including polyphenols. Viruses in nanoscale size can be used as unqiue templates for MNPs synthesis and assembly. In recent years, the biosynthesis of various MNPs including metals and their compounds has made great progress, and the bio-MNPs have been showed good application potential in antibacterial agents, catalysis, sensors, biological diagnosis and biomedicine, environmental pollutant removal and other aspects. However, biosynthesis of MNPs is still faced with challenges in control of morphology and nano-size, product recovery and purification, and lack of mass production technology, leading to the limitation in industrial application. This review offers a retrospection of the recent progress of MNPs biosynthesis by various types of microorganisms and plant tissue extracts, and summarizes the biosynthesis mechanism and applications of bio-MNPs. Then the main problems existing in current research are discussed and the future research directions are prospected, so as to provide reference for green biosynthesis of MNPs with low cost and good controllability.
|
Published: 22 April 2021
|
|
Fund:This workwas financially supported by the National Natural Science Foundation of China (31900109), Key Project of Youth Science Foundation of Jiangxi Province (20202ACB215001). |
About author:: Fei Zhu,a postgraduate student in Jiangxi Normal University, is mainly engaged in study of nano-biomate-rials. Long Zou, an associate professor and M.S. tutor in Jiangxi Normal University, received his Ph.D. degree in Clean Energy Science from Southwest University (Jun. 2006). His research interests are nano-biotechnology and nano-biomaterials. He has published more than 20 papers in the academic journals of Advanced Energy Materials, Advanced Functional Materials, Journal of Power Sources. He was selected as a member of “Double Thousand-Plan” for cultivating talents in scientific and technological innovation in Jiangxi Province. |
|
|
1 Zharov V P, Kim J W, Curiel D T, et al. Nanomedicine-Nanotechnology Biology and Medicine, 2005, 1(4), 326. 2 Gahlawat G, Choudhury A R. RSC Advances, 2019, 9(23), 12944. 3 Mirhendi M, Emtiazi G, Roghanian R. Iet Nanobiotechnology, 2013, 7(4), 135. 4 Zhang X R. Acta Microbiologica Sinica, 2011, 51(3), 297(in Chinese). 张晓蓉. 微生物学报, 2011, 51(3), 297. 5 Park T J, Lee K G, Lee S Y. Applied Microbiology and Biotechnology, 2016, 100(2), 521. 6 Kuppusamy P, Yusoff M M, Maniam G P, et al. Saudi Pharmaceutical Journal, 2016, 24(4), 473. 7 Timoszyk A. Bulletin of Materials Science, 2018, 41(6),154. 8 Yan L, Zhang S, Chen P, et al. Microbiological Research, 2012, 167(9), 507. 9 Hildebrand M, Lerch S J L. Seminars in Cell & Developmental Biology, 2015, 46,27. 10 Beveridge T J, Murray R G. Journal of Bacteriology, 1980, 141(2),876. 11 Southam G, Beveridge T J. Geochimica Et Cosmochimica Acta,1994,58(20),4527. 12 Seku K, Gangapuram B R, Pejjai B, et al. Chemical Papers, 2019, 73(7),1695. 13 Wen L, Lin Z, Gu P, et al. Journal of Nanoparticle Research, 2009, 11(2), 279. 14 Reith F, Etschmann B, Grosse C, et al. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42), 17757. 15 Zhang H L,Yang J,Zhou H, et al. Chinese Journal of Applied & Environmental Biology, 2019, 25(2),457(in Chinese). 张珩琳, 杨婧, 周浩,等.应用与环境生物学报, 2019, 25(2), 457. 16 Pooley F D. Nature, 1982, 296(5858),642. 17 Klaus T, Joerger R, Olsson E, et al. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24), 13611. 18 Parikh R Y, Singh S, Prasad B L V, et al. Chembiochem, 2008, 9(9),1415. 19 Saravanan M, Barik S K, Mubarakali D, et al. Microbial Pathogenesis, 2018, 116,221. 20 Korbekandi H, Iravani S, Abbasi S. Journal of Chemical Technology and Biotechnology, 2012, 87(7), 932. 21 Mokhtari N, Daneshpajouh S, Seyedbagheri S, et al. Materials Research Bulletin, 2009, 44(6), 1415. 22 Malarkodi C, Rajeshkumar S, Paulkumar K, et al. Drug Invention Today, 2013, 5(2),119. 23 Shahverdi A R, Minaeian S, Shahverdi H R, et al. Process Biochemistry, 2007, 42(5), 919. 24 Ghorbani H R. Asian Journal of Chemistry, 2013, 25(3), 1247. 25 Zhang H R, Li Q B, Lu Y H, et al. Journal of Chemical Technology and Biotechnology, 2005, 80(3), 285. 26 Nair B, Pradeep T. Crystal Growth & Design, 2002, 2(4), 293. 27 Konishi Y, Ohno K, Saitoh N, et al. Journal of Biotechnology, 2007, 128(3), 648. 28 Attard G, Casadesus M, Macaskie L E, et al. Langmuir, 2012, 28(11), 5267. 29 Wu R, Tian X, Xiao Y, et al. Journal of Materials Chemistry A, 2018, 6(23), 10655. 30 Varia J C, Zegeye A, Velasquez-Orta S, et al. Chemical Engineering Journal, 2016, 288, 482. 31 Ahmed E, Kalathil S, Shi L, et al. Journal of Saudi Chemical Society, 2018, 22(8), 919. 32 Lv Q, Zhang B, Xing X, et al. Journal of Hazardous Materials, 2018, 347,141. 33 Song X, Shi X. Applied Surface Science, 2019, 491, 682. 34 Xia Z C, Cheng Y Y, Kong W Q, et al. Process Biochemistry, 2016, 51(3), 408. 35 Vaigankar D C, Dubey S K, Mujawar S Y, et al. Ecotoxicology and Environmental Safety, 2018, 165, 516. 36 Chellamuthu P, Naughton K, Pirbadian S, et al. Frontiers in Microbiology, 2019, 10,938. 37 Xu H, Xiao Y, Xu M, et al. Nanotechnology, 2019, 30(6),065607. 38 Liu J, Zheng Y, Hong Z, et al. Science Advances, 2016, 2(9),e1600858. 39 Han R, Song X, Wang Q, et al. Journal of Chemical Technology and Biotechnology, 2019, 94(10), 3375. 40 Voeikova T A, Shebanova A S, Ivanov Y D, et al. Applied Biochemistry and Microbiology, 2016, 52(8), 769. 41 Yu Y Y, Cheng Q W, Sha C, et al. Chemical Engineering Journal, 2020, 379, 122404 . 42 Xiao X, Liu Q Y, Lu X R, et al. International Biodeterioration & Biodegradation, 2017, 116, 10. 43 Lee J H, Kim M G, Yoo B, et al. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51), 20410. 44 Xiao X, Ma X B, Yuan H, et al. Journal of Hazardous Materials, 2015, 288, 134. 45 Dong B, Liu G, Zhou J, et al. RSC Advances, 2015, 5(118), 97798. 46 Dundas C M, Graham A J, Romanovicz D K, et al. ACS Synthetic Biology, 2018, 7(12), 2726. 47 Xie J, Chen K, Chen X. Nano Research, 2009, 2(4), 261. 48 Taran M, Rad M, Alavi M. Pharmaceutical Sciences, 2017, 23(3), 198. 49 Ghasemi N, Jamali-Sheini F, Zekavati R. Materials Letters, 2017, 196, 78. 50 Vena M P, Jobbagy M, Bilmes S A. Science of the Total Environment, 2016, 565, 804. 51 Jacob J M, Lens P N L, Balakrishnan R M. Microbial Biotechnology, 2016, 9(1), 11. 52 Bai H J, Zhang Z M, Guo Y, et al. Colloids and Surfaces B-Biointerfa-ces, 2009, 70(1), 142. 53 Yan Z Y, Du Q Q, Qian J, et al. Enzyme and Microbial Technology, 2017, 96, 96. 54 Gong J, Song X, Gao Y, et al. Inorganic and Nano-Metal Chemistry, 2018, 48(2), 96. 55 Qi S, Yang S, Chen J, et al. ACS Applied Materials & Interfaces, 2019, 11(11), 10442. 56 Ordenes-Aenishanslins N, Anziani-Ostuni G, Quezada C P, et al. Frontiers in Microbiology, 2019, 10, 1587 57 Manimaran M, Kannabiran K. Letters in Applied Microbiology, 2017, 64(6), 401. 58 Sivalingam P, Antony J J, Siva D, et al. Colloids and Surfaces B-Bioin-terfaces, 2012, 98, 12. 59 Otari S V, Patil R M, Ghosh S J, et al. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 136, 1175. 60 Wypij M, Golinska P, Dahm H, et al. Iet Nanobiotechnology, 2017, 11(3), 336. 61 Balraj B, Senthilkumar N, Siva C, et al. Research on Chemical Intermediates, 2017, 43(4), 2367. 62 Shaaban M, El-Mahdy A M. Iet Nanobiotechnology, 2018, 12(6), 741. 63 Nabila M I, Kannabiran K. Biocatalysis and Agricultural Biotechnology, 2018, 15, 56. 64 Hassan S E D, Fouda A, Radwan A A, et al. Journal of Biological Inorganic Chemistry, 2019, 24(3), 377. 65 Dameron C T, Reese R N, Mehra R K, et al. Nature, 1989, 338(6216), 596. 66 Lin Z Y, Wu J M, Xue R, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2005, 61(4), 761. 67 Saitoh N, Fujimori R, Nakatani M, et al. Hydrometallurgy, 2018, 181, 29. 68 Sriramulu M, Sumathi S. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9,025018. 69 Agnihotri M, Joshi S, Kumar A R, et al. Materials Letters, 2009, 63(15), 1231. 70 Pimprikar P S, Joshi S S, Kumar A R, et al. Colloids and Surfaces B-Biointerfaces, 2009, 74(1), 309. 71 Seshadri S, Saranya K, Kowshik M. Biotechnology Progress, 2011, 27(5), 1464. 72 Mala J G S, Rose C. Journal of Biotechnology, 2014, 170, 73. 73 Cao K, Chen M M, Chang F Y, et al. Biochemical Engineering Journal, 2020, 156, 107497 . 74 Singh P, Kim Y J, Zhang D, et al. Trends in Biotechnology, 2016, 34(7), 588. 75 Khan A U, Malik N, Khan M, et al. Bioprocess and Biosystems Enginee-ring, 2018, 41(1),1. 76 Ahmad A, Mukherjee P, Senapati S, et al. Colloids and Surfaces B-Biointerfaces, 2003, 28(4), 313. 77 Duran N, Marcato P D, De Souza G I H, et al. Journal of Biomedical Nanotechnology, 2007, 3(2), 203. 78 Vigneshwaran N, Ashtaputre N M, Varadarajan P V, et al. Materials Letters, 2007, 61(6), 1413. 79 Li G Q. Fungus-mediated green synthesis of nano-material using Aspergillus terreus and their applications. Ph.D. Thesis, Jilin University, China, 2012(in Chinese). 李广泉. 土曲霉介导的纳米材料生物还原制备及其应用的研究. 博士学位论文,吉林大学, 2012. 80 Wanarska E, Maliszewska I. Bioorganic Chemistry, 2019, 93, 102803. 81 Janakiraman V, Govindarajan K, Magesh C R. Bionanoscience, 2019, 9(3), 573. 82 Seetharaman P K, Chandrasekaran R, Gnanasekar S, et al. Biocatalysis and Agricultural Biotechnology, 2018, 16, 22. 83 Zhou J Z,Shi C H, Zhu N W. Microbiology, 2018, 45(11), 2387(in Chinese). 周家智, 石超宏, 朱能武.微生物学通报, 2018, 45(11), 2387. 84 Mohamed A A, Fouda A, Abdel-Rahman M A, et al. Biocatalysis and Agricultural Biotechnology, 2019, 19, UNSP 101103 . 85 Uddandarao P, Mohan B R. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2016, 207, 26. 86 Gordon R, Losic D, Tiffany M A, et al. Trends in Biotechnology, 2009, 27(2), 116. 87 Ferreira V D S, Conzferreira M E, Lima L M T R, et al. Enzyme and Microbial Technology, 2017, 97, 114. 88 Arsiya F, Sayadi M H, Sobhani S. Materials Letters, 2017, 186, 113. 89 Mishra V, Arya A, Chundawat T S. Current Organocatalysis, 2020, 7(1), 23. 90 Govindaraju K, Basha S K, Kumar V G, et al. Journal of Materials Science, 2008, 43(15), 5115. 91 Singaravelu G, Arockiamary J S, Kumar V G, et al. Colloids and Surfaces B-Biointerfaces, 2007, 57(1), 97. 92 Rajathi F A A, Parthiban C, Kumar V G, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2012, 99, 166. 93 Rajeshkumar S, Malarkodi C, Gnanajobitha G, et al. Journal of Nanostructure in Chemistry, 2013, 3(1), 44. 94 Arya A, Gupta K, Chundawat T S, et al. Bioinorganic Chemistry and Applications, 2018, 2018, 7879403 . 95 Abboud Y, Saffaj T, Chagraoui A, et al. Applied Nanoscience, 2014, 4(5), 571. 96 Pugazhendhi A, Prabhu R, Muruganantham K, et al. Journal of Photochemistry and Photobiology B-Biology, 2019, 190, 86. 97 El-Kassas H Y, Aly-Eldeen M A, Gharib S M. Acta Oceanologica Sinica, 2016, 35(8), 89. 98 Le D H T, Lee K L, Shukla S, et al. Nanoscale, 2017, 9(6), 2348. 99 Mao C B, Flynn C E, Hayhurst A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12), 6946. 100 Yang Y. Preparation of CdS nanomaterials by virus- templated and the investigation of their photocatalytic properties. Master’s Thesis, Nor-theast Forestry University, China, 2019(in Chinese). 杨悦. 病毒模板法制备CdS纳米材料及其光催化性能研究. 硕士学位论文, 东北林业大学, 2019. 101 Adigun O O, Retzlaff-Roberts E L, Novikova G, et al. Langmuir, 2017, 33(7), 1716. 102 Zhou J. Controlled synthesis of metal nanomaterials based on octreotide acetate and adenovirus vector .Master’s Thesis, Yanshan University, China, 2014(in Chinese). 周景. 基于醋酸奥曲肽和腺病毒载体控制合成纳米金属材料的研究. 硕士学位论文, 燕山大学, 2014. 103 Tiwari M, Jain P, Hariharapura R C, et al. Process Biochemistry, 2016, 51(10), 1348. 104 Nordmeier A, Merwin A, Roeper D F, et al. Chemosphere, 2018, 203, 521. 105 Pat-Espadas A M, Razo-Flores E, Rangel-Mendez J R, et al. Applied Microbiology and Biotechnology, 2013, 97(21), 9553. 106 Prasad K, Jha A K. Journal of Colloid and Interface Science, 2010, 342(1), 68. 107 Avendano R, Chaves N, Fuentes P, et al. Scientific Reports, 2016, 6, 37155. 108 Hossain A, Hong X, Ibrahim E, et al. Molecules, 2019, 24(12), 2303. 109 Xiao X, Zhu W W, Yuan H, et al. Biochemical Engineering Journal, 2016, 105, 214. 110 De Corte S, Hennebel T, Verschuere S, et al. Journal of Chemical Technology and Biotechnology, 2011, 86(4), 547. 111 Moon J W, Ivanov I N, Joshi P C, et al. Acta Biomaterialia, 2014, 10(10), 4474. 112 Faramarzi S, Anzabiz Y, Jafarizadeh-Malmiri H. Archives of Microbiology, 2020,DOI, 10.1007/s00203-020-01831-0. 113 Noor S, Shah Z, Javed A, et al. Journal of Microbiological Methods, 2020,174, 105966. 114 Jacob J M, Rajan R, Tom T C, et al. Ceramics International, 2019, 45(18), 24193. 115 Akther T, Mathipi V, Kumar N S, et al. Environmental Science and Pollution Research, 2019, 26(13), 13649. 116 Kadam V V, Ettiyappan J P, Balakrishnan R M. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2019, 243, 214. 117 Kalaimurugan D, Sivasankar P, Lavanya K, et al. Journal of Cluster Science, 2019, 30(4), 1071. 118 Diko C S, Zhang H, Lian S, et al. Materials Chemistry and Physics, 2020, 246, 122583. 119 Borah D, Das N, Das N, et al. Applied Organometallic Chemistry, 2020, 34(5),e5597. 120 Wishkerman A, Arad S. In:Conference on Nanotechnology Ⅷ.Barcelona(ES), 2017, pp. 102480W.1-102480W.7. 121 Balaraman P, Balasubramanian B, Kaliannan D, et al. Waste and Biomass Valorization, DOI: 10.1007/s12649-020-01083-5. 122 Adigun O O, Retzlaff-Roberts E L, Novikova G, et al. Langmuir, 2017, 33(7), 1716. 123 Zhou J C, Soto C M, Chen M S, et al. Journal of Nanobiotechnology, 2012, 10, 18 . 124 Yang C, Manocchi A K, Lee B, et al. Journal of Materials Chemistry, 2011, 21(1), 187. 125 Hoag G E, Collins J B, Holcomb J L, et al. Journal of Materials Che-mistry, 2009, 19(45), 8671. 126 Aziz-S B, Hussein G, Brza M A, et al. Nanomaterials (Basel, Switzerland), 2019, 9(11),1557. 127 Ahmad F, Ashraf N, Ashraf T, et al. Applied Microbiology and Biotechnology, 2019, 103(7), 2913. 128 Okaiyeto K, Hoppe H, Okoh A I. Journal of Cluster Science,DOI, 10.1007/s10876-020-01766-y. 129 Maghimaa M, Alharbi S A. Journal of Photochemistry and Photobiology B-Biology, 2020, 204, 111806. 130 Punniyakotti P, Panneerselvam P, Perumal D, et al. Bioprocess and Biosystems Engineering, DOI: 10.1007/s00449-020-02357-x. 131 Liu Y, Huang C, Weng X L, et al. Chinese Journal of Environmental Engineering, 2016, 10(8), 4118(in Chinese). 刘勇, 黄超, 翁秀兰, 等. 环境工程学报, 2016, 10(8), 4118. 132 Verma S K, Nisha K, Panda P K, et al. Science of the Total Environment, 2020, 713, 136521. 133 Renuga D, Jeyasundari J, Athithan A S S, et al. Materials Research Express, 2020, 7(4),045007. 134 Ayodhya D, Veerabhadram G. Journal of Photochemistry and Photobio-logy B-Biology, 2016, 157, 57. 135 Ayodhya D, Veerabhadram G. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, S215. 136 Ahmad N, Sharma S, Alam M K, et al. Colloids and Surfaces B-Bioin-terfaces, 2010, 81(1), 81. 137 Pan Z, Lin Y, Sarkar B, et al. Journal of Colloid and Interface Science, 2020, 558, 106. 138 Kumar S A, Abyaneh M K, Gosavi S W, et al. Biotechnology Letters, 2007, 29(3), 439. 139 Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, et al. Artificial Cells Nanomedicine and Biotechnology, 2017, 45(8), 1588. 140 Ingle A, Gade A, Pierrat S, et al. Current Nanoscience, 2008, 4(2), 141. 141 Karthik L, Kumar G, Kirthi A V, et al. Bioprocess and Biosystems Engineering, 2014, 37(2), 261. 142 Kim T Y, Kim M G, Lee J H, et al. Frontiers in Microbiology, 2018, 9, 2817. 143 Cologgi D L, Lampa-Pastirk S, Speers A M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37), 15248. 144 Kang F, Alvarez P J, Zhu D. Environmental Science & Technology, 2014, 48(1), 316. 145 Raj R, Dalei K, Chakraborty J, et al. Journal of Colloid and Interface Science, 2016, 462, 166. 146 Jayaseelan C, Rahuman A A, Roopan S M, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2013, 107, 82. 147 Kuppusamy P, Mashitah M Y, Maniam G P, et al. Asian Pacific Journal of Tropical Disease, 2014, 4(3),223. 148 Prasad K S, Vaghasiya J V, Soni S S, et al. Applied Biochemistry and Biotechnology, 2015, 177(6), 1386. 149 Srivastava P, Kowshik M. Applied and Environmental Microbiology, 2017, 83(7),e03091. 150 Naz M, Nasiri N, Ikram M, et al. Applied Nanoscience, 2017, 7(8), 793. 151 Gong C P, Li S C, Wang R Y. Journal of Photochemistry and Photobio-logy B-Biology, 2018, 183, 137. 152 Nam K T, Kim D W, Yoo P J, et al. Science, 2006, 312(5775), 885. 153 Murugan M, Miran W, Masuda T, et al. Chemelectrochem, 2018, 5(24), 4015. 154 Tripathi R M, Gupta R K, Bhadwal A S, et al. Iet Nanobiotechnology, 2015, 9(4), 178. 155 Liang M. Zinc sulfide nanoparticles from Pseudomonas putida nm-l exhibiting photocatalytic activities and their applications. Master’s Thesis, Northeast Forestry University, China, 2019(in Chinese). 梁铭. 恶臭假单胞菌nm-1产ZnS纳米颗粒的光催化活性及其应用. 硕士学位论文, 东北林业大学, 2019. 156 Jyoti K, Singh A. Journal of Genetic Engineering & biotechnology, 2016, 14(2), 311. 157 Wang J Y, Pu S Y, Hou G Q. Chinese Journal of Environmental Engineering,2020,14(9),2537(in Chinese). 王嘉瑜, 蒲生彦, 侯国庆.环境工程学报, 2020,14(9),2537. |
|
|
|