METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Study on Constitutive Model for FGH96 Superalloy Based on Bodner-Partom Theory |
XIAO Yang, QIN Haiqin, XU Kejun
|
Department of Aviation Mechanical Engineering and Management in Qingdao Branch, Naval Aviation University, Qingdao 266041, China |
|
|
Abstract In order to study the deformation characteristics of a typical material powder metallurgy superalloy FGH96 used in aeroengine turbine disk, the Bodner-Partom (B-P) unified viscoplastic constitutive theory was used to construct its mechanical behavior of FGH96 at high temperature. Uniaxial tension and low cycle fatigue tests were carried out at 550 ℃, and the model parameters were identified and optimized by Levenberg-Marquardt algorithm. In order to improve the accuracy and reliability of the integration process, an integral step control strategy based on inelastic strain increment was introduced. The B-P model was introduced into ABAQUS finite element software through the user material subroutine UMAT for numerical simulation. The results showed that the FGH96 superalloy exhibits a certain rate dependence and cyclic softening characteristics at high temperature. The average relative error between the simulation curve and the test results is less than 10%, which shows that the B-P model can better simulate the deformation characteristics of FGH96 superalloy at high temperature, and the accuracy of the model and the UMAT subroutine is verified.
|
Published: 24 July 2020
|
|
Fund:This work was financially supported by the National Natural Science Foundation of China (51605487), the National Natural Science Foundation Youth Fund of China (61803071). |
About author:: Yang Xiao, Ph. D. candidate, Department of Aviation Mechanical Engineering and Management in Qingdao Branch, Naval Aviation University. Received M.S. degree in December 2016 from Naval Aviation University. Main research interests are structural strength and reliability of aeroengine. Kejun Xuis currently a professor and doctoral supervisor at Department of Aviation Mechanical Engineering and Management in Qingdao Branch, Naval Aviation University. His research interests focus on fault diagnosis and health assessment of aeroengine. |
|
|
1 Wang S Y, Li H Q, Yang H T. Journal of Aeronautical Materials, 2007, 27(5), 30(in Chinese). 王淑云, 李惠曲, 杨洪涛.航空材料学报, 2007, 27(5), 30. 2 Yang Z G. Study on the mechanics performance of nickel-base powder metallurgy(PM) superalloy and applying in turbine disk. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2007(in Chinese). 杨治国. 粉末高温合金材料的力学特性及其在涡轮盘上的应用研究. 博士学位论文, 南京航空航天大学, 2007. 3 Beijing Institute of Aeronautical Materials. Materials technology of aeronautics, Aviation Industry Press, China, 2013(in Chinese). 北京航空材料研究院.航空材料技术, 航空工业出版社, 2013. 4 Zou J W, Wang W X. Journal of Aeronautical Materials, 2006, 26(3), 244(in Chinese). 邹金文, 汪武祥.航空材料学报, 2006, 26 (3), 244. 5 Zhou L, Wang H, Zhang G D, et al. Journal of Plasticity Engineering, 2009, 16(5), 149(in Chinese). 周磊, 王宏, 张国栋, 等.塑性工程学报, 2009, 16(5), 149. 6 Lei J F, Zheng Y, Yu J, et al. Aerospace Materials & Technology, 2011(6), 18(in Chinese). 雷景富, 郑勇, 余俊, 等.宇航材料工艺, 2011(6), 18. 7 Wu K, Liu G Q, Hu M F, et al. Materials China, 2010, 29(3), 23(in Chinese). 吴凯, 刘国权, 胡木芙, 等.中国材料进展, 2010, 29(3), 23. 8 Wang X F, Zhou X M, Mu S L, et al. Materials Reports A:Review Papers, 2012, 26(4), 108(in Chinese). 王晓峰, 周晓明, 穆松林, 等.材料导报:综述篇, 2012, 26(4), 108. 9 Er Q L, Dong J X, Zhang M C, et al. Chinese Journal of Engineering, 2016, 38(2), 248(in Chinese). 佴启亮, 董建新, 张麦仓, 等.工程科学学报, 2016, 38(2), 248. 10 Fu Q F, Yang X L, Liu K M. Heat Treatment Technology and Equipment, 2018, 39(3), 71(in Chinese). 付青峰, 杨细莲, 刘克明.热处理技术与装备, 2018, 39(3), 71. 11 Guo M W, Liu C R, Zheng X P, et al. Hot Working Technology, 2017, 46(20), 11(in Chinese). 郭茂文, 刘春荣, 郑雪萍, 等.热加工工艺, 2017, 46(20), 11. 12 Zhang Y W, Liu J T. Materials China, 2013, 32(1), 1(in Chinese). 张义文, 刘建涛.中国材料进展, 2013, 32(1), 1. 13 Wang Y R, Wang X C, Zhong B, et al. International Journal of Fatigue, 2019, 122, 116. 14 Zhong B, Wang Y R, Wei D S, et al. International Journal of Fatigue, 2017, 109, 26. 15 Miao G L, Yang X G, Shi D Q. Journal of Aerospace Power, 2017, 32(2), 424(in Chinese). 苗国磊, 杨晓光, 石多奇.航空动力学报, 2017, 32(2), 424. 16 Feng Y F, Zhou X M, Zou J W, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(4), 493. 17 Wang X, Chen X, Wang X F, et al. Rare Metal Materials and Enginee-ring, 2019, 48(1), 269(in Chinese). 王欣, 陈星, 王晓峰, 等.稀有金属材料与工程, 2019, 48(1), 269. 18 Yang J, Li J L, Dong D K, et al. Journal of Aeronautical Materials, 2019, 39(2), 33(in Chinese). 杨俊, 李京龙, 董登科, 等.航空材料学报, 2019, 39(2), 33. 19 Zhao J Q, Liu J, Zhang Y D, et al. Powder Metallurgy Industry, 2015, 35(5), 47(in Chinese). 赵剑青, 刘晶, 张银东, 等.粉末冶金工业, 2015, 35(5), 47. 20 Tian G F, Chen Y, Wang Y. Powder Metallurgy Technology, 2018, 36(6), 403(in Chinese). 田高峰, 陈阳, 汪煜.粉末冶金技术, 2018, 36(6), 403. 21 Fang B, Tian G F, Zhen J, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26(5), 657. 22 Liu S, Zhang X, Yu H X, et al. Aeronautical Manufacturing Technology, 2019, 62(1), 72(in Chinese). 刘帅, 张雪, 于海鑫, 等.航空制造技术, 2019, 62(1), 72. 23 Wang C Y, Dong Y P, Song X J, et al. Journal of Aeronautical Mate-rials, 2016, 36(5), 14(in Chinese). 王超渊, 东赟鹏, 宋晓俊, 等.航空材料学报, 2016, 36(5), 14. 24 Chen M Y, Bai P C, Zhang A F, et al. Materials Reports B:Research Papers, 2015, 29(10), 101(in Chinese). 陈梦洋, 白朴存, 张安峰, 等.材料导报:研究篇, 2015, 29(10), 101. 25 Zhao J P, Yuan S Q, Tao Y, et al. Materials Reports B:Research Papers, 2010, 24(9), 65(in Chinese). 赵军普, 袁守谦, 陶宇, 等.材料导报:研究篇, 2010, 24(9), 65. 26 Qin Z J, Liu C Z, Wang Z, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(1), 50(in Chinese). 秦子珺, 刘琛仄, 王子, 等.中国有色金属学报, 2016, 26(1), 50. 27 Fu H, Wang M Y, Ji Z, et al. Powder Metallurgy Technology, 2018, 36(3), 201(in Chinese). 傅豪, 王梦雅, 纪箴, 等.粉末冶金技术, 2018, 36(3), 201. 28 Liu C K, Wei Z W, Zhang J Q, et al. Journal of Aeronautical Materials, 2018, 38(3), 40(in Chinese). 刘昌奎, 魏振伟, 张佳庆, 等.航空材料学报, 2018, 38(3), 40. 29 Chavoshi S Z, Jiang J, Wang Y,et al. International Journal of Mechanical Sciences, 2018, 138, 110. 30 Fang B, Ji Z, Tian G F, et al. Rare Metal Materials and Engineering, 2014, 43(12), 3089(in Chinese). 方彬, 纪箴, 田高峰, 等.稀有金属材料与工程, 2014, 43(12), 3089. 31 Bodner S R, Partom Y. Journal of Applied Mechanics, 1975, 42(1), 385. 32 Yang X G, Shi D Q. Viscoplastic constitutive theory and application, Defense Industry Press, China, 2013(in Chinese). 杨晓光, 石多奇. 粘塑性本构理论及其应用, 国防工业出版社, 2013. 33 Lu K H, Zhang H J, Jia P C. Journal of Propulsion Technology, 2019, 40(2), 416. 卢孔汉, 张宏建, 贾鹏超.推进技术, 2019, 40(2), 416. 34 Kang G Z. Engineering Mechanics, 2005, 22(3), 204(in Chinese). 康国政.工程力学, 2005, 22(3), 204. 35 Hu X T, Song Y D. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(2), 196(in Chinese). 胡绪腾, 宋迎东.机械科学与技术, 2009, 28(2), 196. 36 Feng M H. A visco-plastic unified constitutive theory for deformation. Ph.D. Thesis, Dalian University of Technology, China, 2000(in Chinese). 冯明珲. 粘弹塑性统一本构理论. 博士学位论文, 大连理工大学, 2000. |
|
|
|