INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Surface Coating Strategy and White LED Applications Progress of All-inorganic Cesium Lead Halide Perovskites Nanocrystals |
LIANG Mengbiao1, CHEN Ting1,*, QIN Zhe1, XIE Zhixiang1, XU Yanqiao2, WEN Peng1, LIN Jian1, GUO Chunxian1
|
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China 2 School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangsu, China |
|
|
Abstract All-inorganic cesium lead halide perovskite nanocrystals CsPbX3 (X=Cl,Br,I) exhibit excellent photoelectric properties, such as high photoluminescence quantum yield, long carrier lifetime, narrow emission line width, and adjustable band gap. They show great application prospects in the fields of light-emitting diodes (LED), solar cells, photoelectric detection, etc. However, perovskite nanocrystals present poor stability under the conditions of water, light and temperature due to the inherent ionic features, which seriously hinders the application of nanocrystals in the field of optoelectronics. In recent years, researchers have reported various methods to improve the stability of perovskite nanocrystals, including ion doping, surface passivation and surface coating. Compared with ion doping and surface passivation, the surface coating strategy not only isolates the CsPbX3 nanocrystals from the environment, but also avoids their anion exchange from different anionic components of perovskite nanocrystals, and thus significantly improves the stability of nanocrystals. Therefore, we introduce the coating mechanism of all inorganic cesium lead halide perovskite nanocrystals in detail, and focus on the advantages of this strategy from the aspects of polymer films, oxides, metal orga-nic frameworks, zeolite and other coating materials. Finally, the applications of coating materials in lighting and display are summarized.
|
Published:
Online: 2024-06-25
|
|
Fund:National Natural Science Foundation of China (52062019,22001187),the Qinglan Project of Jiangsu Province. |
|
|
1 Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012, 338(6107), 643. 2 Bercegol A, Ory D, Suchet D, et al. Nature Communications, 2019, 10(1), 1. 3 Islam N U, Usman M, Rasheed S, et al. ECS Journal of Solid State Science and Technology, 2021, 10, 106004. 4 An K, Kim C, Kim S, et al. Small, 2023, 19(20), 2206133. 5 Wei H, Huang J. Nature Communications, 2019, 10(1), 1. 6 Xiao H, Fu J, Wei X, et al. Laser & Photonics Reviews, 2022, 16(11), 2200276. 7 He Q, Zhou C, Xu L, et al. ACS Materials Letters, 2020, 2(6), 633. 8 O'Neill J, Braddock I, Crean C, et al. Frontiers in Physics, 2023, 10, 1400. 9 Lv W, Li L, Xu M, et al. Advanced Materials, 2019, 31(28), 1900682. 10 Yin L, Wu H, Pan W, et al. Advanced Optical Materials, 2019, 7(19), 1900491. 11 Lu L, Pan X, Luo J, et al. Chemistry-A European Journal, 2020, 26(71), 16975. 12 Yuan F, Zheng X, Johnston A, et al. Science Advances, 2020, 6(42), eabb0253. 13 Akkerman Q A, Rainò G, Kovalenko M V, et al. Nature Materials, 2018, 17(5), 394. 14 Qaid S M H, Ghaithan H M, Al-Asbahi B A, et al. Surfaces and Interfaces, 2021, 23, 100948. 15 Li J, Wang B, Liu Z. Journal of Luminescence, 2021, 240, 118413. 16 Erol E, Kıbrıslı O, Ersundu M Ç, et al. Chemical Engineering Journal, 2020, 401, 126053. 17 Liu X K, Xu W, Bai S, et al. Nature Materials, 2021, 20(1), 10. 18 Gong Z, Zhang W, Pan S, et al. Journal of Crystal Growth, 2022, 586, 126604. 19 Wang D, Li W, Du Z, et al. Journal of Materials Chemistry C, 2020, 8(5), 1649. 20 Zou S, Liu Y, Li J, et al. Journal of the American Chemical Society, 2017, 139(33), 11443. 21 Pan J, Huang H, Zhao W, et al. ACS Applied Nano Materials, 2022, 5(10), 15062. 22 Zhong Q, Cao M, Xu Y, et al. Nano Letters, 2019, 19(6), 4151. 23 Yu M, Zhang D, Xu Y, et al. Journal of Colloid and Interface Science, 2022, 608, 2367. 24 Zhang Q, Jiang M, Yan G, et al. Journal of Materials Chemistry C, 2022, 10(15), 5849. 25 Sun C, Wei J, Zhao J, et al. Nanophotonics, 2020, 10(8), 2157. 26 Hu Y, Kareem S, Dong H, et al. ACS Applied Nano Materials, 2021, 4(6), 6306. 27 Bao Z, Chang Y C, Wang H C, et al. Green Chemistry, 2021, 23(22), 8871. 28 Wang B, Peng J, Yang X, et al. Laser & Photonics Reviews, 2022, 16, 2100736. 29 Song J, Li J, Li X, et al. Advanced Materials, 2015, 27(44), 7162. 30 Kang J, Wang L W. The Journal of Physical Chemistry Letters, 2017, 8(2), 489. 31 Protesescu L, Yakunin S, Bodnarchuk M I, et al. Nano Letters, 2015, 15(6), 3692. 32 Liu F, Zhang Y, Ding C, et al. ACS Nano, 2017, 11(10), 10373. 33 Li X, Wu Y, Zhang S, et al. Advanced Functional Materials, 2016, 26(15), 2435. 34 Li J, Xu L, Wang T, et al. Advanced Materials, 2017, 29(5), 1603885. 35 De Roo J, Ibáñez M, Geiregat P, et al. ACS Nano, 2016, 10(2), 2071. 36 Liu Y, Li Y, Hu X, et al. Chemical Engineering Journal, 2023, 453, 139904. 37 Leguy A M A, Hu Y, Campoy-Quiles M, et al. Chemistry of Materials, 2015, 27(9), 3397. 38 Ren J, Dong X, Zhang G, et al. New Journal of Chemistry, 2017, 41(22), 13961. 39 Guan J, Yang D, Ma J, et al. Journal of Materials Chemistry B, 2023, 11, 1705. 40 Chen J, Liu D, Al-Marri M J, et al. Science China Materials, 2016, 59(9), 719. 41 Li J, Liu G, Lu Y, et al. Journal of Materials Chemistry C, 2022, 10, 15843. 42 Shi J, Ge W, Tian Y, et al. Small, 2021, 17(14), 2006568. 43 Chen H, Wang Y, Wang J, et al. Coatings, 2021, 11(8), 953. 44 Shi Z, Li Y, Zhang Y, et al. Nano Letters, 2017, 17(1), 313. 45 Burwig T, Fränzel W, Pistor P. The Journal of Physical Chemistry Letters, 2018, 9(16), 4808. 46 Wei Y, Deng X, Xie Z, et al. Advanced Functional Materials, 2017, 27(39), 1703535. 47 Jiang D H, Tsai Y H, Veeramuthu L, et al. APL Materials, 2019, 7(11), 111105. 48 Chen L, Yuan S, Chen A, et al. Optical Materials, 2022, 127, 112289. 49 Luo F, Zhang Y, Zu Y, et al. Microchimica Acta, 2022, 189(2), 68. 50 Zhang Q, Wang B, Zheng W, et al. Nature Communications, 2020, 11(1), 1. 51 Jiang M C, Lin C Q, Yang Z, et al. Journal of Solid State Chemistry, 2023, 318, 123724. 52 An M N, Park S, Brescia R, et al. ACS Energy Letters, 2021, 6(3), 900. 53 Song S, Wang W, Cao B. Optical Materials, 2022, 133, 113070. 54 Geng Y, Guo J, Wang H, et al. Small, 2022, 18(19), 2200740. 55 Lignos I, Stavrakis S, Nedelcu G, et al. Nano Letters, 2016, 16(3), 1869. 56 Chen Z, Zhao J, Zeng R, et al. Chemical Engineering Journal, 2022, 433, 133195. 57 Mo Q, Chen C, Cai W, et al. Laser & Photonics Reviews, 2021, 15(10), 2100278. 58 Adhikari G C, Thapa S, Zhu H, et al. ACS Applied Electronic Materials, 2019, 2(1), 35. 59 Thapa S, Adhikari G C, Zhu H, et al. Journal of Alloys and Compounds, 2021, 860, 158501. 60 Ji Y, Wang M, Yang Z, et al. The Journal of Physical Chemistry Letters, 2021, 12(15), 3786. 61 Zhang M, Li Y, Du K, et al. Journal of Materials Chemistry C, 2021, 9(4), 1228. 62 Qiu L G, Xu T, Li Z Q, et al. Angewandte Chemie International Edition, 2008, 47(49), 9487. 63 Ren J, Li T, Zhou X, et al. Chemical Engineering Journal, 2019, 358, 30. 64 Chen P, Liu Y, Zhang Z, et al. Nanoscale, 2019, 11, 16499. 65 Bhattacharyya S, Rambabu D, Maji T K. Journal of Materials Chemistry A, 2019, 7(37), 21106. 66 Chen C, Nie L, Huang Y, et al. Nanotechnology, 2022, 33(17), 175603. 67 Sun J Y, Rabouw F T, Yang X F, et al. Advanced Functional Materials, 2017, 27(45), 1704371. 68 Ye S, Sun J Y, Han Y H, et al. ACS Applied Materials & Interfaces, 2018, 10(29), 24656. 69 Wang P, Wang B, Liu Y, et al. Angewandte Chemie International Edition , 2020, 132(51), 23300. 70 Wang W, Guo R, Xiong X, et al. Materials Today Physics, 2021, 18, 100374. 71 Li B, Zhang Y, Xu Y, et al. Journal of Materials Chemistry C, 2021, 9(36), 12118. 72 Zhang Y, Han L, Li B, et al. Chemical Engineering Journal, 2022, 437, 135290. 73 Ren J, Meijerink A, Zhou X, et al. ACS Applied Materials & Interfaces, 2022, 14(2), 3176. 74 Li J S, Tang Y, Li Z T, et al. ACS Nano, 2021, 15(1), 550. 75 Tong Y, Wang Q, Mei E, et al. Advanced Optical Materials, 2021, 9(11), 2100012. 76 Zhang Q, Zheng W, Wan Q, et al. Advanced Optical Materials, 2021, 9(11), 2002130. 77 Hao J, Qu X, Qiu L, et al. Advanced Optical Materials, 2019, 7(4), 1801323. 78 Lin J, Wang S, Chen G, et al. Journal of Materials Chemistry C, 2022, 10(18), 7263. 79 Li H, Eddaoudi M, O'Keeffe M, et al. Nature, 1999, 402(6759), 276. 80 Luzan S M, Talyzin A V. Microporous and Mesoporous Materials, 2010, 135(1-3), 201. 81 Wu H, Wang S, Cao F, et al. Chemistry of Materials, 2019, 31(6), 1936. 82 Zhou Y, Yu Y, Zhang Y, et al. Inorganic Chemistry, 2021, 60(6), 3814. 83 Cao Y, Wang N, Yi C, et al. Acta Optica Sinica, 2022, 42(17), 1733001(in Chinese). 曹雨, 王娜娜, 伊昌, 等. 光学学报, 2022, 42(17), 1733001. 84 Xuan T, Huang J, Liu H, et al. Chemistry of Materials, 2019, 31(3), 1042. 85 Zhang X, Wang H C, Tang A C, et al. Chemistry of Materials, 2016, 28(23), 8493. 86 Hormats E I, Unterleitner F C. The Journal of Physical Chemistry, 1965, 69(11), 3677. |
|
|
|