INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on Electrochemically Producing Hydrogen Peroxide Using Two-dimensional Materials as Catalysts |
SHENG Xiong1,2, LI Bangxing1,*, LU Shun2, LU Wenqiang2, LI Xiaofeng3, KANG Shuai2,*
|
1 Faculty of Science, Chongqing University of Technology, Chongqing 400054, China 2 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China 3 Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China |
|
|
Abstract The electrochemical production of hydrogen peroxide via the two-electron oxygen reduction reaction (ORR) is a green, mild, and on-demand strategy. The key to this process is highly active, selective, and stable electrocatalysts. Noble metal catalysts are the most effective catalysts for the electrochemical production of hydrogen peroxide due to their unique physical and chemical properties. However, low-cost catalysts are essential for achieving the large-scale production of hydrogen peroxide. Therefore, reducing the dosage of precious metals or finding affor-dable and readily available alternatives has been a topic of considerable research interest in recent years. Numerous non-precious metals or non-metallic materials have been used in oxygen reduction electrocatalysts, some of which have comparable or even superior electrochemical perfor-mances compared to noble metal catalysts. Furthermore, the band structures and surface structures of two-dimensional materials are easier to adjust than those of bulk materials. Two-dimensional materials exhibit faster electron transportation, achieve higher atomic utilization, and possess more exposed active sites. This review discusses the reaction mechanisms of the two-electron ORR for hydrogen peroxide production based on reported experimental results and theoretical calculations, and collates recent reports on the use of graphene, two-dimensional transition metal chalcogenide compounds, two-dimensional MOFs/COFs, g-C3N4, and MXenes as electrocatalysts for the ORR. Finally, the remaining challenges of the application of two-dimensional materials as oxygen reduction electrocatalysts are briefly summarized.
|
Published: 25 June 2024
Online: 2024-06-25
|
|
Fund:Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019374) and the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0923). |
|
|
1 Ma X, Cheng H. Chemical Engineering Journal, 2022, 429, 132373. 2 Zhang K, Zhou M, Yang K, et al. Journal of Hazardous Materials, 2022, 423, 127172. 3 Hage R and Lienke A. Angewandte Chemie International Edition, 2005, 45, 2. 4 Chen Z, Chen S, Siahrostami S, et al. Reaction Chemistry & Enginee-ring, 2017, 2, 239. 5 Wang W, Zhang H, Jiang J, et al. New Journal of Chemistry, 2022, 46, 2. 6 Fukuzumi S, Yamada Y, Karlin K D. Electrochimica Acta, 2012, 82, 493. 7 Campos-Martin J M, Blanco-Brieva G, Fierro J L. Angewandte Chemie International Edition, 2006, 45, 42. 8 Garcia T, Murillo R, Agouram S, et al. Chemical Communications, 2012, 48, 43. 9 Lei J, Chen Z Q, Li Y Z, et al. Materials Reports, 2021, 35(9), 9140 (in Chinese). 雷静, 陈子栖, 李怡招, 等. 材料导报, 2021, 35(9), 9140. 10 Xia C, Back S, Ringe S, et al. Nature Catalysis, 2020, 3, 2. 11 Jiang Y, Ni P, Chen C, et al. Advanced Energy Materials, 2018, 8, 31. 12 Watanabe E, Ushiyama H, Yamashita K. Catalysis Science & Technology, 2015, 5, 2769. 13 Gao J, Liu B. ACS Materials Letters, 2020, 2, 8, 1008. 14 Wang K, Huang J, Chen H, et al. Chemical Communications, 2020, 56, 81. 15 Yasin G, Ibrahim S, Ajmal S, et al. Coordination Chemistry Reviews, 2022, 469, 214669. 16 Kumar A, Vashistha V K, Das D K, et al. Fuel, 2021, 304, 121420. 17 Kumar A, Ibraheem S, Anh Nguyen T, et al. Coordination Chemistry Reviews, 2021, 446, 214122. 18 Zhang Y, Lin Y, Duan T, et al. Materials Today, 2021, 48, 115. 19 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 5696. 20 Kim H W, Park H, Roh J S, et al. Chemistry of Materials, 2019, 31, 3967. 21 Rêgo C R, Oliveira L N, Tereshchuk P, et al. Journal of Physics:Condensed Matter, 2015, 27, 41. 22 Pizzutilo E, Kasian O, Choi C H, et al. Chemical Physics Letters, 2017, 683, 436. 23 Terrones H, Lv R, Terrones M, et al. Reports on Progress in Physics, 2012, 75, 6. 24 Kim H W, Ross M B, Kornienko N, et al. Nature Catalysis, 2018, 1, 282. 25 Zhang L, Xia Z. The Journal of Physical Chemistry C, 2011, 115, 11170. 26 Zhang B, Xu W, Lu Z, et al. Transactions of Tianjin University, 2020, 26, 188. 27 Su P, Zhou M, Song G, et al. Journal of Hazardous Materials, 2020, 397, 122781. 28 Sun Y, Li S, Jovanov Z P, et al. ChemSusChem, 2018, 11, 19. 29 Perazzolo V, Durante C, Pilot R, et al. Carbon, 2015, 95, 949. 30 Wan K, Yu Z P, Li X H, et al. ACS Catalysis, 2015, 5, 7. 31 Liu Y, Liu H, Wang C, et al. Environmental Science & Technology, 2013, 47, 23. 32 Guo D, Shibuya R, Akiba C, et al. Science, 2016, 351, 6271. 33 Su P, Zhou M, Lu X, et al. Applied Catalysis B:Environmental, 2019, 245, 583. 34 Fernandez-Escamilla H N, Guerrero-Sanchez J, Contreras E, et al. Advanced Energy Materials, 2020, 11, 2002459. 35 Mavrikis S, Göltz M, Rosiwal S, et al. ACS Applied Energy Materials, 2020, 3, 3169. 36 Mavrikis S, Göltz M, Perry S C, et al. ACS Energy Letters, 2021, 6, 2369. 37 Espinoza-Montero P J, Alulema-Pullupaxi P, Frontana-Uribe B A, et al. Current Opinion in Solid State and Materials Science, 2022, 26, 100988. 38 Xia Y, Zhao X, Xia C, et al. Nature Communications, 2021, 12, 1. 39 Chen S, Chen Z, Siahrostami S, et al. Journal of American Chemistry Society, 2018, 140, 25. 40 Li X, Wang X, Xiao G, et al. Journal of Colloid and Interface Science, 2021, 602, 799. 41 Aveiro L R, da Silva A G M, Antonin V S, et al. Electrochimica Acta, 2018, 268, 101. 42 Wu K H, Wang D, Lu X, et al. Chem, 2020, 6, 1443. 43 Lu Z, Chen G, Siahrostami S, et al. Nature Catalysis, 2018, 1, 156. 44 Sa Y J, Kim J H, Joo S H. Angewandte Chemie International Edition, 2019, 58, 4. 45 Nesselberger M, Roefzaad M, Hamou R F, et al. Nature Materials, 2013, 12, 10. 46 Mittermeier T, Weiß A, Gasteiger H A, et al. Journal of the Electroche-mical Society, 2017, 164, F1081. 47 Fortunato G V, Pizzutilo E, Mingers A M, et al. The Journal of Physical Chemistry C, 2018, 122, 15878. 48 Wang Y L, Gurses S, Felvey N, et al. ACS Catalysis, 2019, 9, 8453. 49 Song X, Li N, Zhang H, et al. Journal of Power Sources, 2019, 435, 226771. 50 Song X, Li N, Zhang H, et al. ACS Applied Materials & Interfaces, 2020, 12, 15. 51 Zhang Q, Tan X, Bedford N M, et al. Nature Communications, 2020, 11, 1. 52 Rana A, Lee Y M, Li X, et al. ACS Catalysis, 2021, 11, 3073. 53 Vijayakumar E, Ramakrishnan S, Sathiskumar C, et al. Chemical Engineering Journal, 2022, 428, 131115. 54 Gao J, Yang H b, Huang X, et al. Chem, 2020, 6, 658. 55 Jung E, Shin H, Lee B H, et al. Nature Materials, 2020, 19, 4. 56 Yuan Y, Zheng Y, Liu J, et al. Microchimica Acta, 2017, 184, 4723. 57 Carneiro J F, Paulo M J, Siaj M, et al. Journal of Catalysis, 2015, 332, 51. 58 Tanabe K. Catalysis Today, 1990, 8, 1. 59 Antonin V S, Assumpção M H M T, Silva J C M, et al. Electrochimica Acta, 2013, 109, 245. 60 Carneiro J F, Paulo M J, Siaj M, et al. ChemElectroChem, 2017, 4, 508. 61 Barros W R P, Wei Q, Zhang G, et al. Electrochimica Acta, 2015, 162, 263. 62 Lin L, Sherrell P, Liu Y, et al. Advanced Energy Materials, 2020, 10, 1903870. 63 Tan C, Cao X, Wu X J, et al. Chemical Reviews, 2017, 117, 9. 64 Zhang H, Lu X F, Wu Z P, et al. ACS Central Science, 2020, 6, 8. 65 Zhang H, Cheng W, Luan D, et al. Angewandte Chemie International Edition, 2021, 60, 24. 66 Li X, Wang C, Liu F, et al. Chemical Engineering Journal, 2021, 404, 126556. 67 Ferreira F, Carvalho A, Moura Í J, et al. Journal of Physics:Condensed Matter, 2017, 30, 3. 68 Fang Y, Pan J, He J, et al. Angewandte Chemie International Edition, 2018, 57, 5. 69 Solomon G, Kohan M G, Vagin M, et al. Nano Energy, 2021, 81, 105664. 70 Zhao X, Wang Y, Da Y, et al. National Science Review, 2020, 7, 8. 71 Kagkoura A, Stangel C, Arenal R, et al. The Journal of Physical Che-mistry C, 2022, 126, 14850. 72 Lin C Y, Zhang D, Zhao Z, et al. Advanced Materials, 2018, 30, 5. 73 Cote A P, Benin A I, Ockwig N W, et al. Science, 2005, 310, 5751. 74 Waller P J, Gandara F, Yaghi O M,Accounts of Chemical Research, 2015, 48, 12. 75 Krishnaraj C, Sekhar Jena H, Bourda L, et al. Journal of American Chemistry Society, 2020, 142, 47. 76 Guo Y, Xu Q, Yang S, et al. Chemistry-an Asian Journal, 2021, 16, 5. 77 Yang S, Cheng Q, Mao J, et al. Applied Catalysis B:Environmental, 2021, 298, 120605. 78 Kou M, Wang Y, Xu Y, et al. Angewandte Chemie International Edition, 2022, 61, 19. 79 Zhao W, Yan P, Li B, et al. Journal of American Chemistry Society, 2022, 144, 22. 80 Xiang Z, Xue Y, Cao D, et al. Angewandte Chemie International Edition, 2014, 53, 9. 81 Wang M, Zhang N, Feng Y, et al. Angewandte Chemie International Edition, 2020, 59, 34. 82 Sun X, Li Y, Su H, et al. Applied Catalysis B:Environmental, 2022, 317, 121706. 83 Svoboda L, Praus P, Lima M J, et al. Materials Research Bulletin, 2018, 100, 322. 84 Torres-Pinto A, Sampaio M J, Silva C G, et al. Applied Catalysis B:Environmental, 2019, 252, 128. 85 Liu W, Song C, Kou M, et al. Chemical Engineering Journal, 2021, 425, 130615. 86 Yu F, Wang Y, Ma H, et al. New Journal of Chemistry, 2018, 42, 16703. 87 Li L, Yang F, Ye G J, et al. Nature Nanotechnology, 2016, 11, 7. 88 Ma W, Alonso-Gonzalez P, Li S, et al. Nature, 2018, 562, 7728. 89 Yan J, Verma P, Kuwahara Y, et al. Small Methods, 2018, 2, 1800212. 90 Zhu M, Sun Z, Fujitsuka M, et al. Angewandte Chemie International Edition, 2018, 57, 8. 91 Ren X, Zhou J, Qi X, et al. Advanced Energy Materials, 2017, 7, 1700396. 92 Shi F, Geng Z, Huang K, et al. Advanced Science, 2018, 5, 8. 93 Lyu F, Wang Q, Choi S M, et al. Small, 2019, 15, 1. 94 Warschauer D. Journal of Applied Physics, 1963, 34, 1853. 95 Hu J, Chen C, Hu T, et al. Journal of Materials Chemistry A, 2020, 8(37), 19484. 96 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 37. 97 Ghidiu M, Naguib M, Shi C, et al. Chemical Communications, 2014, 50, 67. 98 Harris K J, Bugnet M, Naguib M, et al. The Journal of Physical Chemistry C, 2015, 119, 13713. 99 Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Advanced Materials, 2015, 27, 23. 100 Sun D, Hu Q, Chen J, et al. ACS Applied Materials & Interfaces, 2016, 8, 1. 101 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale, 2016, 8, 22. 102 Feng L, Zha X H, Luo K, et al. Journal of Electronic Materials, 2017, 46, 2460. 103 Tao Q, Dahlqvist M, Lu J, et al. Nature Communications, 2017, 8, 14949. 104 Tian Y, Yang C, Que W, et al. Journal of Power Sources, 2017, 369, 78. 105 Zhang Y, Li F. Journal of Magnetism and Magnetic Materials, 2017, 433, 222. 106 Zhao C, Yu C, Zhang M, et al. Advanced Energy Materials, 2017, 7, 1602880. 107 Gao G, O’Mullane A P, Du A. ACS Catalysis, 2016, 7, 494. 108 Chaudhari N K, Jin H, Kim B, et al. Journal of Materials Chemistry A, 2017, 5, 24564. 109 Liu F, Liu Y, Zhao X, et al. Small, 2020, 16, 8. 110 Zhang Y, Zhang X, Cheng C, et al. Chinese Chemical Letters, 2020, 31, 931. 111 Yu M, Liang H, Zhan R, et al. Chinese Chemical Letters, 2021, 32, 2155. 112 Li Z, Zhuang Z, Lv F, et al. Advanced Materials, 2018, 30, 43. 113 Huang X, Liu W, Zhang J, et al. ACS Applied Materials & Interfaces, 2022, 14, 9. 114 Huang X, Song M, Zhang J, et al. Nano Research, 2022, 15, 3927. 115 Liu R, Ran L, Niu B, et al. Journal of Nanoscience and Nanotechnology, 2018, 18, 7. |
|
|
|