METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
A Brief Overview of Temperature Rises During Shear Banding in Bulk Metallic Glasses |
LI Jiaojiao1,*, FAN Jing2, WANG Zhong3
|
1 Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China 2 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China 3 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030051, China |
|
|
Abstract Bulk metallic glasses (BMGs) possess amorphous structure that lacks long-range orders. In contrast to crystal metals, shear banding is ge-nerally believed to be a common plastic deformation mode at temperatures far below glass transition temperature for monolithic BMGs. While shear bands can accommodate some plastic strain, they would evolve into cracks to cause the catastrophic fracture of BMG samples. The investigation of shear-banding instability contributes to the understanding of plastic deformation mechanisms and further provides insights on strategies for improving the plastic deformation capability of BMGs. It is reported that structural softening and thermal softening are two potential origins of shear-banding instability in BMGs. In this review, we summarize the investigations on the shear heating mainly from four aspects, including temperature rises depending on testing strain rates, the external confinement, testing-machine stiffnesses, and testing temperatures. Finally, we discuss some key issues on the investigation of temperature rises and provide research topics for understanding shear-banding instability.
|
Published: 25 April 2024
Online: 2024-04-28
|
|
Fund:Fundamental Research Program of Shanxi Province, China (20210302124098) and the Opening Project of Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology (XJZZ202204). |
|
|
1 Cheng Y Q, Ma E. Progress in Materials Science, 2011, 56, 379. 2 Wang J F, Li R, Hua N B, et al. Journal of Materials Research, 2011, 26(16), 2072. 3 Jiang H, Shang T, Xian H, et al. Small Structures, 2020, 2, 2000057. 4 Miracle D B. The Journal of the Minerals, Metals & Materials Society, 2012, 64, 846. 5 Ding J, Patinet S, Falk M L, et al. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14052. 6 Hufnagel T C, Schuh C A, Falk M L. Acta Materialia, 2016, 109, 375. 7 Guan P F, Wang B, Wu Y C, et al. Acta Physica Sinica, 2017, 66, 176112. 8 Im S, Chen Z, Johnson J M, et al. Microscopy and Microanalysis, 2018, 24, 202. 9 Spaepen F. Acta Matallurgica, 1977, 25, 407. 10 Argon A S. Acta Matallurgica, 1979, 27, 47. 11 Langer M L, Falk J S. Physical Review E, 1998, 57, 7192. 12 Johnson W L, Samwer K. Physical Review Letters, 2005, 95, 1995501. 13 Jiang M Q, Dai L H. Journal of the Mechanics and Physics of Solids, 2009, 57, 1267. 14 Maaß R, Löffler J F. Advanced Functional Materials, 2015, 25, 2353. 15 Liu C, Roddatis V, Kenesei P, et al. Acta Materialia, 2017, 140, 206. 16 Klaumünzer D, Maaß R, Löffler J F. Journal of Materials Research, 2011, 26, 1453. 17 Lewandowski J J, Greer A L. Nature Materials, 2005, 5, 15. 18 Slaughter S K, Kertis F, Deda E, et al. APL Materials, 2014, 2, 096110. 19 Sun B A, Pauly S, Tan J, et al. Acta Materialia, 2012, 60, 4160. 20 Jiang W, Fan G, Liu F, et al. International Journal of Plasticity, 2008, 24, 1. 21 Antonaglia J, Xie X, Schwarz G, et al. Scientific Reports, 2014, 4, 4382. 22 Li J J, Wang Z, Qiao J W. Materials & Design, 2016, 99, 427. 23 Luo Y S, Li J J, Wang Z, et al. Journal of Alloys and Compounds, 2021, 864, 158107. 24 Li J J, Fan J F, Wang Z, et al. Intermetallics, 2020, 116, 106637. 25 Wang J G, Pan Y, Song S X, et al. Materials Science and Engineering A, 2016, 651, 321. 26 Wright W J, Ricardo B S, William D N. Materials Science and Enginee-ring A, 2001, 319-321, 229. 27 Wright W J, Samale M W, Hufnagel T C, et al. Acta Materialia, 2009, 57, 4639. 28 Qu R T, Liu Z Q, Wang G, et al. Acta Materialia, 2015, 91, 19. 29 Antonaglia J, Wright W J, Gu X, et al. Physical Review Letters, 2014, 112, 155501. 30 Wright W J, Byer R R, Gu X. Applied Physics Letters, 2013, 102, 241920. 31 Cao P, Dahmen K A, Kushima A, et al. Journal of the Mechanics and Physics of Solids, 2018, 114, 158. 32 Qu R T, Wu S J, Wang S G, et al. Journal of the Mechanics and Physics of Solids, 2020, 138, 103922. 33 Zhang Z F, Zhang H, Pan X F, et al. Philosophical Magazine Letters, 2005, 85, 513. 34 Qu R T, Wang S G, Li G J, et al. Scripta Materialia, 2019, 162, 136. 35 Hu J, Sun B A, Yang Y, et al. Intermetallics, 2015, 66, 31. 36 Han Z, Wu W F, Li Y, et al. Acta Materialia, 2009, 57, 1367. 37 Thurnheer P, Maaß R, Laws K J, et al. Acta Materialia, 2015, 96, 428. 38 Thurnheer P. Dynamics and temperature of shear banding in metallic glasses. Ph.D. Thesis, ETH Zurich, Switzerland, 2016. 39 Maaß R, Klaumünzer D, Löffler J F. Acta Materialia, 2011, 59, 3205. 40 Leamy H L, Chen H S, Wang T T. Metallurgical Transactions, 1972, 3, 699. 41 Georgarakis K, Aljerf M, Li Y, et al. Applied Physics Letters, 2008, 93, 031907. 42 Thurnheer P, Haag F, Löffler J F. Acta Materialia, 2016, 115, 468. 43 Xie X, Lo Y C, Tong Y, et al. Journal of the Mechanics and Physics of Solids, 2019, 124, 634. |
|
|
|