INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
In-situ Fabrication of Zeolite Using Alkali-activated Slag-metakaolin as Precursors |
YE Jiayuan, LI Guohao, SHI Di, REN Xuehong, WU Chunli, ZHANG Hongtao, ZHANG Wensheng*
|
State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China |
|
|
Abstract Zeolite has been regarded as a promising material with wide applications in construction, agriculture, water treatment and chemical industry owing to its unique properties, such as adsorption, filtration and catalysis. The fabrication of zeolite from alkali-activated cementitious mate-rial was known as a new technology in recent years. Generally, zeolites synthesized from metakaolin-based precursors show the problems of low mechanical strength and interface stratification. An improved method by introducing slag into metakaolin was proposed in this work. NaP-zeolite and NaA-zeolite were in-situ prepared by hydrothermal method using slag/metakaolin-based alkali-activated material as precursors. The effects of hydrothermal temperature, reaction time and slag content on crystal type, percent conversion and compressive strength of samples were investigated. The results suggested that the number of crystal types decreased with the increasing temperature, the percent conversion increased at the lower temperature and then decreased at the higher temperature. The obvious change in zeolite types was not observed in the process of prolonging reaction time, but the percent conversion increased. It must be noted that the excessive reaction time led to the dissolution of zeolite, thus the percent of zeolite conversion decreased. A moderate incorporation of slag led both the hydrothermal temperature and the reaction time for zeolite formation to decrease, strength of hydrothermal samples to increase, the phenomenon of stratification to be weaken. The suitable conditions for fabrication of zeolites were as follows: 10% of slag, hydrothermal treatment at 110 ℃ and for 20 h. The resulted samples showed the excellent performance, such as the compressive strength of 62.2 MPa and the zeolite conversion of 70%.
|
Published: 10 November 2023
Online: 2023-11-10
|
|
Fund:Beijing Natural Science Foundation (2202061). |
|
|
1 Isabel D, Alvaro M. Micron, 2011, 42(5), 512. 2 Li K, Cheng H F. China Non-metallic Minerals Industry. 2019(3), 1 (in Chinese). 李昆, 程宏飞. 中国非金属矿工业导刊, 2019(3), 1. 3 Zhu L F. Green novel routes for synthesis of zeolites. Ph. D. Thesis, Jilin University, China, 2014 (in Chinese). 朱龙凤. 沸石分子筛的绿色合成新路线. 博士学位论文, 吉林大学, 2014. 4 Han L, Wang J, Liu Z, et al. Journal of Hazardous Materials, 2020, 393, 122468. 5 Inada M, Tsujimoto H, Eguchi Y, et al. Fuel, 2005, 84(12), 1482. 6 Kita H, Fuchida K, Horita T, et al. Separation and Purification Techno-logy, 2001, 25(1), 261. 7 Ye J Y. A geopolvmer synthesized from calcined ore-dressing tailing of bauxite and the mechanism of performance evolution. Ph. D. Thesis, China Building Material Academy, China, 2015 (in Chinese). 叶家元. 活化铝土矿选尾矿制备碱激发胶凝材料及其性能变化机制. 博士学位论文, 中国建筑材料科学研究总院, 2015. 8 Provis J L, Bernal S A. Annual Review of Materials Research, 2014, 44(1), 299. 9 Provis J L, Deventer J S J V. Chemical Engineering Science, 2007, 62(9), 2318. 10 Cui X, He Y, Liu L, et al. MRS Communications, 2011, 1(1), 49. 11 He Y, Cui X M, Liu X D, et al. Journal of Membrane Science, 2013, 447, 66. 12 He Y, Cui X, Mao J, et al. Microporous and Mesoporous Materials, 2012, 161, 187. 13 He Y. Study on the preparation mechanism and application of NaA zeolite from geopolymers in-situ crystallization. Ph. D. Thesis, Guangxi University, China, 2013 (in Chinese). 贺艳. 地质聚合物原位转化NaA分子筛制备机理研究与应用. 博士学位论文, 广西大学, 2013. 14 Mao J, Wang Y P, Liu J, et al. Journal of the Chinese Ceramic Society, 2013, 41(9), 1244 (in Chinese). 冒进, 王艺频, 刘菁, 等. 硅酸盐学报, 2013, 41(9), 1244. 15 Zhang J, Mao J, Wang Y P, et al. Journal of Synthetic Crystals, 2013, 42(11), 2390 (in Chinese). 张锦, 贺艳, 王艺频, 等. 人工晶体学报, 2013, 42(11), 2390. 16 Azarshab M, Mohammadi F, Maghsoodloorad H, et al. Ceramics International, 2016, 42(14), 15568. 17 Liu H, Zhao H, Gao X, et al. Catalysis Today, 2007, 125(3), 163. 18 Xu M X, Wang Y P, Tang Q, et al. Journal of Guangxi University(Na-tural Science Edition), 2016, 41(5), 1610 (in Chinese). 徐梦雪, 王艺频, 唐青, 等. 广西大学学报(自然科学版), 2016, 41(5), 1610. 19 Zhang J, Mao J, Wang Y P, et al. Journal of Guangxi University(Natural Science Edition), 2013, 38(6), 1313 (in Chinese). 张锦, 冒进, 王艺频, 等. 广西大学学报(自然科学版), 2013, 38(6), 1313. 20 Xu M, He Y, Wang C, et al. Applied Clay Science, 2015, 115, 254. 21 Zhang Z, Li L, He D, et al. Materials Letters, 2016, 178, 151. 22 Wang T J. Fabrication of metakaolin geopolymer-based membranes and their application in environmental-protection. Master's Thesis, Guangxi University, China, 2018 (in Chinese). 王杰挺. 偏高岭土基地质聚合物膜的制备及其在环保领域的应用. 硕士学位论文, 广西大学, 2018. 23 Wang Y P. Preparation of low Si/Al ratio of zeolite using metakalin geopolymer-gels-conversation method. Master's Thesis, Guangxi University, China, 2015 (in Chinese). 王艺频. 偏高岭土地质聚合物凝胶转化法制备低硅铝比沸石分子筛. 硕士学位论文, 广西大学, 2015. 24 Jin Y, Li L, Liu Z, et al. Advanced Powder Technology, 2021, 32(3), 791. 25 Chou X M, Liu Y D, Yan C J, et al. Acta Petrologica ET Mineralogica, 2018, 37(4), 669 (in Chinese). 仇秀梅, 刘亚东, 严春杰, 等. 岩石矿物学杂志, 2018, 37(4), 669. 26 Wang Y H, Chen J Y, Lei X R, et al. Acta Petrologica ET Mineralogica, 2016, 35(6), 1068 (in Chinese). 王源慧, 陈洁渝, 雷新荣, 等. 岩石矿物学杂志, 2016, 35(6), 1068. 27 Zhang X L, Chen L, Wang X Z, et al. Journal of Synthetic Crystals, 2018, 47(10), 2170 (in Chinese). 张西玲, 陈林, 王献忠, 等. 人工晶体学报, 2018, 47(10), 2170. 28 Zhang J. Preparation, surface modification and oil/water separation pro-perties of sepiolite porous ceramics. Master's Thesis, Wuhan University of Science and Technology, China, 2019 (in Chinese). 张俊. 海泡石多孔陶瓷的制备、表面改性及其油水分离性能研究. 硕士学位论文, 武汉科技大学, 2019. 29 Ye J Y, Zhang W S, Shi D. Journal of the Chinese Ceramic Society, 2017, 45(8), 1101 (in Chinese). 叶家元, 张文生, 史迪. 硅酸盐学报, 2017, 45(8), 1101. 30 Ye J Y, Zhong W H, Zhang W S, et al. Cement, 2010(6), 5 (in Chinese). 叶家元, 钟卫华, 张文生, 等. 水泥, 2010(6), 5. 31 Huo Z, Xu X, Lv Z, et al. Journal of Thermal Analysis and Calorimetry, 2012, 111(1), 365. 32 Runtti H, Luukkonen T, Niskanen M, et al. Journal of Hazardous Materials, 2016, 317, 373. 33 Mingos D M P. Advanced Materials, 1993, 5(11), 857. 34 Chen Y L. Synthesis and characterization of zeolite Beta membranes and the investigation of their properties. Ph. D. Thesis, Jilin University, China, 2014(in Chinese). 陈艳丽. 沸石Beta分子筛膜的合成与表征及其性质研究. 博士学位论文, 吉林大学, 2009. 35 Liang D S. Study of the crystalline mechanism of LTA and FAU zeolites with UV Raman spectroscopy. Master's Thesis, Jilin University, China, 2008 (in Chinese). 梁德声. 利用紫外拉曼光谱研究LTA和FAU分子筛晶化机理. 硕士学位论文, 吉林大学, 2008. 36 Shi L. Hydrothermal synthesis and charaterization of Mn(Ⅱ)-substituted aluminophosphates and manganese phosphates. Ph. D. Thesis, Jilin University, China, 2005 (in Chinese). 石磊. Mn(Ⅱ)取代磷酸铝和磷酸锰微孔化合物的水热合成与表征. 博士学位论文, 吉林大学, 2005. 37 Wang Y G. Study on production process of 4A zeolite from mother liquor of Bayer seeding process. Master's Thesis, Xi'an University of Architecture and Technology, China, 2010 (in Chinese). 王有刚. 拜尔法种分母液生产4A沸石工艺研究. 硕士学位论文, 西安建筑科技大学, 2010. 38 Wu X J. The exploration of special synthesis methods of zeolite L. Master's Thesis, Taiyuan University of Technology, China, 2009 (in Chinese). 武行洁. L沸石的特种合成路线的探索. 硕士学位论文, 太原理工大学, 2009. 39 Xu J Y. The studies on the synthesis and characterization of (Al)EU-1 and (B, Ce)EU-1 zeolites. Master's Thesis, Taiyuan University of Technology, China, 2007 (in Chinese). 徐景炎. (Al)EU-1和(B、Ce)EU-1沸石的合成与表征研究. 硕士学位论文, 太原理工大学, 2007. |
[1] |
ZHAO Shuaikai, LI Yaru, REN Yongpeng, WANG Changji, PAN Kunming, WANG Limeng, LYU Beibei, XIA Liangbin, CHEN Xuemin. Research Progress on the Application of ZIF-derived Materials in Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions[J]. Materials Reports, 2023, 37(S1): 23010012-12. |
|
|
|
|