INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on the Application of Graphene and MXenes in Hydrogen Sensor |
WANG Lei1,2, YU Xinhai1,2,*, YUAN Shuaishuai1,2, YAO Xinqi1,2, LI Chuandong1,2
|
1 MOE Key Laboratory of Pressure Systems and Safety, East China University of Science and Technology, Shanghai 200237, China 2 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract With the depletion of fossil energy sources such as oil, coal and natural gas, hydrogen energy has shown an increasingly critical role in industrial production and transportation. The hydrogen energy industry has put forward comprehensive requirements of resistance to high pressure, excellent sealing, and prevention of combustion and explosion in the whole chain process of production, storage, transportation, filling and usage. A hydrogen sensor with high sensitivity, quick response, good selectivity, and strong stability is an important detection apparatus for ensuring the safety of the hydrogen energy system. The development of novel hydrogen-sensitive materials is crucial to fabricate advanced hydrogen sensors. Graphene and MXenes are the most representative two-dimensional planar nanomaterials, which not only have superb electrical and mechanical properties, but also can be modified functionally without affecting their intrinsic properties, thus showing great potential for applications in hydrogen sensing. In this paper, the basic structures, types, and synthesis methods of graphene and MXenes are reviewed. The application research progress of graphene and MXenes in hydrogen sensors is summarized. The existing problems and the corresponding solutions are discussed. The future research directions of hydrogen sensors are introduced.
|
Published: 10 November 2023
Online: 2023-11-10
|
|
Fund:National Natural Science Foundation of China (21476073). |
|
|
1 Osman A I, Mehta N, Elgarahy A M, et al. Environmental Chemistry Letters, 2022, 20, 153. 2 Li Y, Taghizadeh-Hesary F. Energy Policy, 2022, 160, 112703. 3 Aminov R, Egorov A. International Journal of Energy Research, 2020, 44, 5609. 4 Okolie J A, Patra B R, Mukherjee A, et al. International Journal of Hydrogen Energy, 2021, 46, 8885. 5 Zhao F, Mu Z, Hao H, et al. Energy Technology, 2020, 8, 2000179. 6 Upham D C, Agarwal V, Khechfe A, et al. Science, 2017, 358, 917. 7 Zhou X, Liu Y, Jin Z, et al. Advanced Science, 2021, 8, 2002465. 8 Lin L, Yu Q, Peng M, et al. Journal of American Chemical Society, 2021, 143, 309. 9 Chi J, Yu H. Chinese Journal of Catalysis, 2018, 39, 390. 10 Tarhan C, Çil M A. Journal of Energy Storage, 2021, 40, 102676. 11 Zhang H, Zhu Y, Liu Q, et al. Applied Energy, 2022, 306, 118131. 12 Perera S M, Hettiarachchi S R, Hewage J W. ACS Omega, 2022, 7, 2316. 13 Li Z, Wang S, Gao M, et al. ACS Applied Energy Materials, 2022, 5, 1226. 14 Rowberg A J E, Weston L, Van de Walle C G. The Journal of Physical Chemistry C, 2021, 125, 2250. 15 Anastasopoulou A, Furukawa H, Barnett B R, et al. Energy & Environmental Science, 2021, 14, 1083. 16 Van Hoecke L, Laffineur L, Campe R, et al. Energy & Environmental Science, 2021, 14, 815. 17 Multi-Year Research, Development, and Demonstration Plan, 576 2011-2020. Section 3. 7 Hydrogen Safety, Codes and Standards. Department of Energy, Washington, DC, 2015. 18 Lee H, Kim J, Moon H, et al. Advanced Materials, 2021, 33, 2005929. 19 Hassan M, Abbas G, Li N, et al. Advanced Materials Technologies, 2022, 7, 2100773. 20 Kaltenbrunner M, Adam G, Głowacki E D, et al. Nature Materials, 2015, 14, 1032. 21 Sung S, Park S, Lee W J, et al. ACS Applied Materials & Interfaces, 2015, 7, 7456. 22 Zhu P, Gu S, Shen X, et al. Nano Letters, 2016, 16, 871. 23 Vuluga Z, Sanporean C G, Panaitescu D M, et al. Polymers, 2021, 13, 3560. 24 Xin G, Rong Y, Huang Y, et al. Journal of Materials Science, 2021, 56, 16167. 25 Ji Y, Zeigler D F, Lee D S, et al. Nature Communications, 2013, 4, 2707. 26 Qian K, Tay R Y, Lin M F, et al. ACS Nano, 2017, 11, 1712. 27 Hübert T, Boon-Brett L, Black G, et al. Sensors and Actuators B:Chemical, 2011, 157, 329. 28 Chauhan P S, Bhattacharya S. International Journal of Hydrogen Energy, 2019, 44, 26076. 29 Nguyen T T D, Van Dao D, Lee I H, et al. Journal of Alloys and Compounds, 2021, 854, 157280. 30 Yang F, Kung S C, Cheng M, et al. ACS Nano, 2010, 4, 5233. 31 Pham T K N, Brown J J. ChemistrySelect, 2020, 5, 7277. 32 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666. 33 Zhu Y, Murali S, Cai W, et al. Advanced Materials, 2010, 22, 3906. 34 Eigler S, Hirsch A. Angewandte Chemie International Edition, 2014, 53, 7720. 35 Novoselov K S, Fal′ko V I, Colombo L, et al. Nature, 2012, 490, 192. 36 Wu S, He Q, Tan C, et al. Small, 2013, 9, 1160. 37 Kim Y H, Kim S J, Kim Y J, et al. ACS Nano, 2015, 9, 10453. 38 Cheng C, Li S, Thomas A, et al. Chemical Reviews, 2017, 117, 1826. 39 Kumar N, Salehiyan R, Chauke V, et al. FlatChem, 2021, 27, 100224. 40 Pu N W, Wang C A, Sung Y, et al. Materials Letters, 2009, 63, 1987. 41 Li D, Müller M B, Gilje S, et al. Nature Nanotechnology, 2008, 3, 101. 42 Zaaba N I, Foo K L, Hashim U, et al. Procedia Engineering, 2017, 184, 469. 43 Chen J, Li Y, Huang L, et al. Carbon, 2015, 81, 826. 44 Chen J, Yao B, Li C, et al. Carbon, 2013, 64, 225. 45 Sohail M, Saleem M, Ullah S, et al. Modern Electronic Materials, 2017, 3, 110. 46 Fang S, Lin Y, Hu Y H. ACS Sustainable Chemistry & Engineering, 2019, 7, 12671. 47 Dua V, Surwade S P, Ammu S, et al. Angewandte Chemie International Edition, 2010, 122, 2200. 48 Edwards R S, Coleman K S. Nanoscale, 2013, 5, 38. 49 Muñoz R, Gómez-Aleixandre C. Chemical Vapor Deposition, 2013, 19, 297. 50 Eigler S, Enzelberger-Heim M, Grimm S, et al. Advanced Materials, 2013, 25, 3583. 51 Somani P R, Somani S P, Umeno M. Chemical Physics Letters, 2006, 430, 56. 52 Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Advanced Materials, 2009, 21, 4726. 53 Li Y, Hu Y, Zhao Y, et al. Advanced Materials, 2011, 23, 776. 54 Wang M, Huang M, Luo D, et al. Nature, 2021, 596, 519. 55 Qiu Z, Chen X, Huang Y, et al. Angewandte Chemie International Edition, 2022, 61, e202116955. 56 VahidMohammadi A, Rosen J, Gogotsi Y. Science, 2021, 372, eabf1581. 57 Fu B, Sun J, Wang C, et al. Small, 2021, 17, 2006054. 58 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23, 4248. 59 Ahmed B, Ghazaly A E, Rosen J. Advanced Functional Materials, 2020, 30, 2000894. 60 Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Nature, 2014, 516, 78. 61 Han M, Shuck C E, Rakhmanov R, et al. ACS Nano, 2020, 14, 5008. 62 Iqbal A, Sambyal P, Koo C M. Advanced Functional Materials, 2020, 30, 2000883. 63 Li Z, Wu Y. Small, 2019, 15, 1804736. 64 Liu Z, Alshareef H N. Advanced Electronic Materials, 2021, 7, 2100295. 65 Ma C, Ma M, Si C, et al. Advanced Functional Materials, 2021, 31, 2009524. 66 Sheikh N, Tahir M B, Fatima N, et al. International Journal of Energy Research, 2021, 45, 17563. 67 Wang Y, Guo T, Tian Z, et al. Advanced Materials, 2022, 34, 2108560. 68 Wu X, Ma P, Sun Y, et al. Electroanalysis, 2021, 33, 1827. 69 Li R, Zhang L, Shi L, et al. ACS Nano, 2017, 11, 3752. 70 Wei Y, Zhang P, Soomro R A, et al. Advanced Materials, 2021, 33, 2103148. 71 Alhabeb M, Maleski K, Anasori B, et al. Chemistry of Materials, 2017, 29, 7633. 72 Zhang T, Pan L, Tang H, et al. Journal of Alloys and Compounds, 2017, 695, 818. 73 Wang B, Sun L, Schneider-Ramelow M, et al. Micromachines, 2021, 12, 1429. 74 Jiang J, Zhang Y, Shen Q, et al. Nano Energy, 2021, 89, 106453. 75 Krishnakumar T, Kiruthiga A, Jozwiak E, et al. Ceramics International, 2020, 46, 17076. 76 Del Orbe Henriquez D, Cho I, Yang H, et al. ACS Applied Nano Materials, 2021, 4, 7. 77 Hermawan A, Asakura Y, Yin S. International Journal of Minerals, Me-tallurgy and Materials, 2020, 27, 1560. 78 Schwandt C. Sensors and Actuators B:Chemical, 2013, 187, 227. 79 Chen K, Yuan D, Zhao Y. Optics and Laser Technology, 2021, 137, 106808. 80 Lee J, Koo H, Kim S Y, et al. Sensors and Actuators B:Chemical, 2021, 327, 128930. 81 Nie L, Guo X, Gao C, et al. Journal of Materials Science:Materials in Electronics, 2022, 33, 1604. 82 Li D, Le X, Pang J, et al. Journal of Micromechanics and Microenginee-ring, 2019, 29, 045007. 83 Zeng X Q, Latimer M L, Xiao Z L, et al. Nano Letters, 2011, 11, 262. 84 Li Q, Wang Q, Li L, et al. Advanced Energy Materials, 2020, 10, 2000470. 85 Tong F, Lian Y, Han J. International Journal of Environmental Research and Public Health, 2016, 13, 1254. 86 Rani S, Kumar N, Sharma Y. Journal of Physics:Energy, 2021, 3, 032017. 87 Zhang Y, Zhu P, Li G, et al. ACS Applied Materials Interfaces, 2014, 6, 560. 88 Kwon O S, Park E, Kweon O Y, et al. Talanta, 2010, 82, 1338. 89 Shang J, Xue W, Ji Z, et al. Nanoscale, 2017, 9, 7037. 90 Zhang Y, Ma N, Li J, et al. Advanced Materials Interfaces, 2021, 8, 2001966. 91 Li N, Jiang Y, Xiao Y, et al. Nanoscale, 2019, 11, 21522. 92 Orangi J, Hamade F, Davis V A, et al. ACS Nano, 2020, 14, 640. 93 Zhang J, Zhang G, Zhou T, et al. Advanced Functional Materials, 2020, 30, 1910000. 94 Koo W T, Qiao S, Ogata A F, et al. ACS Nano, 2017, 11, 9276. 95 Du L, Feng D, Xing X, et al. Nanoscale, 2019, 11, 21074. 96 Wang W, Liu X, Mei S, et al. Sensors and Actuators B:Chemical, 2019, 287, 157. 97 Xu H, Liu Y, Liu H, et al. Journal of Alloys and Compounds, 2021, 851, 156844. 98 Weber M, Kim J Y, Lee J H, et al. Journal of Materials Chemistry A, 2019, 7, 8107. 99 Yin X T, Zhou W D, Li J, et al. Journal of Alloys and Compounds, 2019, 805, 229. 100 Lee J, Koo H, Kim S Y, et al. Sensors and Actuators B:Chemical, 2021, 327, 128930. 101 Cho S H, Suh J M, Jeong B, et al. Chemical Engineering Journal, 2022, 446, 136862. 102 Wang T, Huang D, Yang Z, et al. Nano-Micro Letters, 2016, 8, 95. 103 Varghese S S, Lonkar S, Singh K K, et al. Sensors and Actuators B:Chemical, 2015, 218, 160. 104 Wu W, Liu Z, Jauregui L A, et al. Sensors and Actuators B:Chemical, 2010, 150, 296. 105 Ilnicka A, Lukaszewicz J P. Processes, 2020, 8, 633. 106 Kathiravan D, Huang B R, Saravanan A. ACS Applied Materials Interfaces, 2017, 9, 12064. 107 Li R, Ma X, Li J, et al. Nature Communications, 2021, 12, 1587. 108 Chen M, Zou L, Zhang Z, et al. Carbon, 2018, 130, 281. 109 Al-Mashat L, Shin K, Kalantar-Zadeh K, et al. Journal of Physical Chemistry C, 2010, 114, 16168. 110 Lim J, Hwang S, Yoon H S, et al. Carbon, 2013, 63, 3. 111 Hwang T Y, Go G M, Park S, et al. ACS Applied Materials Interfaces, 2019, 11, 47015. 112 Ma J, Zhou Y, Bai X, et al. Nanoscale, 2019, 11, 15821. 113 Cho S Y, Ahn H, Park K, et al. ACS Sensors, 2018, 3, 1876. 114 Favier I, Pla D, Gómez M. Chemical Reviews, 2020, 120, 1146. 115 Fan J, Du H, Zhao Y, et al. ACS Catalysis, 2020, 10, 13560. 116 Huang L, Shen B, Lin H, et al. Journal of American Chemical Society, 2022, 144, 4792. 117 Li X, Liu Y, Hemminger J C, et al. ACS Nano, 2015, 9, 3215. 118 Sharma B, Kim J S. International Journal of Hydrogen Energy, 2018, 43, 11397. 119 Kim M, Lee S M, Jeon J W, et al. ACS Applied Materials Interfaces, 2021, 13, 49128. 120 Kim K, Lee T, Kwon Y, et al. Nature, 2016, 535, 131. 121 Sun Z, Fang S, Hu Y H. Chemical Reviews, 2020, 120, 10336. 122 Guo B, Liang G, Yu S, et al. Energy Storage Materials, 2021, 39, 146. 123 Mo R, Rooney D, Sun K, et al. Nature Communications, 2017, 8, 13949. 124 Zhai Z, Zhang X, Hao X, et al. Advanced Materials Technologies, 2021, 6, 2100127. 125 Liu W, Yin R, Xu X, et al. Advanced Science, 2019, 6, 1802373. 126 Zhang Y, Xu J, Zhou J, et al. Chinese Journal of Catalysis, 2022, 43, 971. 127 Hu L, Bui V T, Krishnamurthy A, et al. Science Advances, 2022, 8, eabl8160. 128 Kumar A, Mohammadi M M, Zhao Y, et al. ACS Applied Nano Materials, 2021, 4, 8081. 129 Ho D H, Choi Y Y, Jo S B, et al. Advanced Materials, 2021, 33, 2005846. 130 Pei Y, Zhang X, Hui Z, et al. ACS Nano, 2021, 15, 3996. 131 Lee E, Vahid M A, Yoon Y S, et al. ACS Sensors, 2019, 4, 1603. 132 Chachuli S A M, Hamidon M N, Ertugrul M, et al. Journal of Alloys and Compounds, 2021, 882, 160671. 133 Zhou J, Shokouh S H H, Komsa H P, et al. Advanced Materials Technologies, 2022, 7, 2101565. 134 Zhu Z, Liu C, Jiang F, et al. Journal of Hazardous Materials, 2020, 399, 123054. 135 Doan T H P, Hong W G, Noh J S. RSC Advances, 2021, 11, 7492. 136 Wu J, Guo Y, Wang Y, et al. Sensors and Actuators B:Chemical, 2022, 361, 131693. 137 Agrawal A V, Kumar R, Yang G, et al. International Journal of Hydrogen Energy, 2020, 45, 9268. 138 Jaiswal J, Tiwari P, Singh P, et al. Sensors and Actuators B:Chemical, 2020, 325, 128800. 139 Gottam S R, Tsai C T, Wang L W, et al. Applied Surface Science, 2020, 506, 144981. 140 Lee S, Kang Y, Lee J, et al. Applied Surface Science, 2020, 571, 151256. 141 Abun A, Huang B R, Saravanan A, et al. ACS Applied Nano Materials, 2020, 3, 12139. 142 Saravanan A, Huang B R, Chu J P, et al. Sensors and Actuators B:Chemical, 2019, 292, 70. 143 Hao L, Liu H, Xu H, et al. Sensors and Actuators B:Chemical, 2019, 283, 740. 144 Ibrahim A, Memon U B, Duttagupta S P, et al. International Journal of Hydrogen Energy, 2021, 46, 23962. 145 Koo W T, Cho H J, Kim D H, et al. ACS Nano, 2020, 14, 14284. |
|
|
|