METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Microstructure and Mechanical Properties of Mg Matrix Composites Reinforced with Nano-TiB2 Coated Continuous Carbon Fibers |
WU Jiahong1,2, WANG Wenguang2,3,*, NI Dingrui2, XIAO Bolv2, LI Rongde1, LIN Nan4, WU Qiusheng4, XIA Jin4
|
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China 4 Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China |
|
|
Abstract The surface of M55J continuous carbon fibers (Cf) was modified with TiB2 nano-coating, using a combination method of sol-gel and carbot-hermal reduction. At first, TiO2 sol (0.2 mol/L) doped with ammonium pentaborate was prepared as the source of TiO2 and B element, and the molar ratio of Ti to B was 1∶2, and then the doped sol was coated on the surface of Cf. After sintering at 1 350 ℃ for 120 min, the in-suit TiB2 could be formed on the surface of Cf, according to the XPS analysis. Following, 40vol% and 50vol% Cf reinforced Mg matrix (Cf/Mg) composites were fabricated by pressure infiltration method, producing the bending strengths of 720 MPa and 870 MPa, respectively. In contrast, the Mg matrix could not be infiltrated into the uncoated Cf preform. The observation of high-resolution transmission electron microscopy (HRTEM) indicated that the interfacial layer in thickness of 20—30 nm is composed of TiB2 and a small quantity of TiC and TiO2 nanoparticles. It is indicated that in-suit TiB2 coating on Cf could improve the wettability between Cf and Mg matrix, and increase the mechanical properties of Cf/Mg compo-site.
|
Published: 25 July 2023
Online: 2023-07-24
|
|
Fund:National Key R & D Program of China (2021YFA1600704), Major Program of National Natural Science Foundation of China (52192594), and the National Natural Science Foundation of China (52120105001, 52192594, 52192595, 519131009). |
|
|
1 Wu G H, Kuang Z Y. Strategic Study of Chinese Academy of Engineering, 2020, 22(2), 79 (in Chinese). 武高辉, 匡泽洋. 中国工程科学, 2020, 22(2), 79. 2 Song M H, Wu G H, Wang C Y, et al. Corrosion Science and Protection Technology, 2008(5), 321 (in Chinese). 宋美慧, 武高辉, 王春雨, 等. 腐蚀科学与防护技术, 2008(5), 321. 3 Zhang K, Li H L. Aeronautical Manufacturing Technology, 1993(3), 23 (in Chinese). 张坤, 李华伦. 航空制造技术, 1993(3), 23. 4 Feldhoff A, Pippel E, Wolterdorf J. Advanced Engineering Materials, 2000, 2(8), 471. 5 Zhang P, Zhang Y Z, Yin F Z, et al. Nonferrous Metals, 2011, 63(1), 19 (in Chinese). 张萍, 张永忠, 尹法章, 等. 有色金属, 2011, 63(1), 19. 6 Wang W G, Xiao B L, Ma Z Y. Composites Science and Technology, 2012, 72(2), 152. 7 Reischer F, Pippel E, Woltersdorf J, et al. Materials Chemistry and Physics, 2007, 104(1), 83. 8 Li S L, Qi L H, Zhang T, et al. Micron, 2017, 101, 170. 9 Xiao P, Gao Y, Yang C, et al. Composites Part B:Engineering, 2020, 198, 108174. 10 Wang Y, Zeng X, Ding W. Scripta Materialia, 2006, 54(2), 269. 11 Wiedemann R, Oettel H, Jerenz M. Surface and Coatings Technology, 1997, 97(1-3), 313. 12 Fastner U, Steck T, Pascual A, et al. Journal of Alloys and Compounds, 2008, 452(1), 32. 13 Bouix J, Vincent H, Boubehira M, et al. Journal of the Less Common Metals, 1986, 117(1-2), 83. 14 Vincent H, Boubehira M, Bouix J. Materials Chemistry and Physics, 1986, 15(2), 113. 15 Ryu J, Ku S H, Lee H, et al. Advanced Functional Materials, 2010, 20(13), 2132. 16 Liu J, Zhang Y, Guo Z, et al. Composites Part A:Applied Science and Manufacturing, 2020, 142(10), 106258. 17 Ding Y, Floren M, Tan W. Biosurface and Biotribology, 2016, 2(4), 121. 18 Kobets L P, Deev I S. Composites Science and Technology, 1998, 57(12), 1571. 19 Li D F, Wang H J, Wang X K, et al. Spectroscopy and Spectral Analysis, 2007, 27(11), 2249 (in Chinese). 李东风, 王浩静, 王心葵, 等. 光谱学与光谱分析, 2007, 27(11), 2249. 20 Yu X, Fan H L, Liu Y, et al. Langmuir the ACS Journal of Surfaces and Colloids, 2014, 30(19), 5497. 21 Li H Q, Aulin Y V, Frazer L, et al. ACS Applied Materials and Interfaces, 2017, 9(8), 6655. 22 Ülker Gürbüz Beker, Ouz Recepolu, Nusret Bulutcu. Thermochimica Acta, 1994, 235(2), 211. 23 Minoshima K S. International Journal of Fatigue, 1994, 24(3), 197. 24 Clyne T W, Watson M C. Composites Science and Technology, 1991, 42(1-3), 25. 25 Sirivedin S, Fenner D N, Nath R B, et al. Composites Part A:Applied Science and Manufacturing, 2006, 37(11), 1936. 26 Sun Z, Hu X, Wang X, et al. Composites Communications, 2021, 24, 100640. 27 Pei R S, Chen G Q, Wang Y P, et al. Journal of Alloys and Compounds:an Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 756, 8. 28 Reddy K M, Guo D Z, Song S X, et al. Science Advances, 2021, 7(8), eabc6714. 29 Qi L H, Li S L, Zhang T, et al. Composite Structures, 2019, 209, 328. 30 Sahoo S, Singh S K. Ceramics International, 2017, 43(17), 15561. 31 Pei L Z, Xiao H N. Journal of Materials Processing Technology, 2009, 209(4), 2122. 32 Wang W G, Xiao B L, Ma Z Y. Composites Science and Technology, 2013, 87, 69. 33 Wang W G, Zhang J F, Zan Y N, et al. Composites Part A:Applied Science and Manufacturing, 2022, 154, 106780. 34 Zhu C, Su Y, Zhang D, et al. Materials Science and Engineering A, 2020, 793(1-2), 139839. |
|
|
|