POLYMERS AND POLYMER MATRIX COMPOSITES |
|
|
|
|
|
Research Progress on the Preparation of Flexible High-precision Conductive Patterns by Inkjet Printing |
LIU Taijiang1,2, CHEN Junlong1,2, ZHAO Jie1,2, CHEN Nanhong1,2, LI Yilin1,2, LIANG Hongfu1,2, YANG Yuexin1,2, YAO Rihui1,2, NING Honglong1,2,*, PENG Junbiao1,2
|
1 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China 2 Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China |
|
|
Abstract The preparation of flexible high-precision conductive patterns is a very critical and important step for the realization of next-generation ultra-low power consumption and flexible electronic devices. From the perspective of processing and manufacturing, the inkjet printing technology of on-demand deposition, as a net shape deposition technology, brings huge opportunities for the preparation of low-cost thin-film devices with its unique advantages. Although there are still challenges in the commercialization of printed wearable electronic devices, in recent years, considerable research efforts on ink materials, inkjet printing processes and device structures have continuously promoted the progress of printing flexible high-precision conductive patterns. This article focuses on the development of flexible conductive pattern ink system, conductive pattern flexibility improvement technology and conductive pattern accuracy improvement technology, discusses the progress made in printing flexible high-precision conductive patterns in recent years, as well as future development and challenges.
|
Published:
Online: 2022-10-26
|
|
Fund:Guangdong Province Key Field Research and Development Program (2020B010183002), National Natural Science Foundation of China (62074059, 22090024), Guangdong Province Basic and Applied Basic Research Major Project (2019B030302007), Special Fund for Fundamental Scientific Research Business Expenses of Central Universities (2020ZYGXZR060), Jihua Laboratory Independent Project “AM-Micro/Mini LED Large-size Display Key Technology Research” (X190221TF191), South China University of Technology 100-step Ladder Climbing Plan Research Project (j2tw2021020001), and Guangdong Province Science and Technology Innovation Strategy Special Fund in 2021 (“Climbing Plan” Special Fund) (pdjh2021b0036). |
|
|
1 Scheideler W J, Kumar R, Zeumault A R, et al. Advanced Functional Materials, 2017, 27(14), 1606062. 2 Jang J, Kitsomboonloha R, Swisher S L, et al. Advanced Materials, 2012, 25(7), 1042. 3 Ante F, Kaelblein D, Zaki T, et al. Small, 2012, 8(1), 73. 4 Yang W, List-Kratochvil E J W, Wang C. Journal of Materials Chemistry C, 2019, 7(48), 15098. 5 Sekine S, Ido Y, Miyake T, et al. Journal of the American Chemical Society, 2010, 132(38), 13174. 6 Chen J H, Ishigami M, Jang C, et al. Advanced Materials, 2008, 19(21), 3623. 7 Kjellander B K C, Smaal W T T, Anthony J E, et al. Advanced Mate-rials, 2010, 22(41), 4612. 8 Deegan R D, Bakajin O, Dupont T F, et al. Nature,1997,389(6653), 827. 9 Choi B, Kwon O. IEEE Transactions on Consumer Electronics, 2004, 50(1), 33 10 Ning H, Zhou Y, Fang Z, et al. Nanoscale Research Letters, 2017, 12(1), 546. 11 Xiao P, Zhou Y, Gan L, et al. Micromachines, 2020, 11(7), 677. 12 Buffat P A, Borel J P. Physical Review A, 1976, 13(6), 2287. 13 Kim Y P, Jung S W, Kang S, et al. Journal of the American Ceramic Society, 2005, 88(8), 2106. 14 Mo L, Liu D, Li W, et al. Applied Surface Science,2011,257(13),5746. 15 Zhou X, Li W, Wu M, et al. Applied Surface Science, 2014, 292(15), 537. 16 Huang Q, Shen W, Song W. Applied Surface Science, 2012, 258(19), 7384. 17 Uttiya S, Bernini C, Vignolo M, et al. Thin Solid Films, 2017, 642(30), 370. 18 Chang Y, Wang D Y, Tai Y L, et al. Journal of Materials Chemistry, 2012, 22(48), 25296. 19 Bhat K S, Ahmad R, Wang Y, et al. Journal of Materials Chemistry C, 2016, 4(36), 8522. 20 Nie X, Wang H, Zou J. Applied Surface Science, 2012, 261, 554. 21 Lamoth M, Plodinec M, Scharfenberg L, et al. ACS Applied Nano Materials, 2019, 2(5), 2909. 22 Tao R, Fang Z, Zhang J, et al. ACS Applied Materials & Interfaces, 2018, 10(27), 22883. 23 Yang W, Wang C, Arrighi V. Journal of Materials Science Materials in Electronics, 2018, 29(4), 1. 24 Nie X, Wang H, Zou J. Applied Surface Science, 2012, 261, 554. 25 Zhou W, Bai S, Ma Y, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24887. 26 Kell A J, Paquet C, Mozenson O, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17226. 27 Zope K R, Cormier D, Williams S. ACS Applied Materials & Interfaces, 2018, 10(4), 3830. 28 Tao R, Fang Z, Ning H, et al. Advanced Materials Technologies, 2019, 4(2), 1800243. 29 Walker S B, Lewis J A. Journal of the American Chemical Society, 2012, 134(3), 1419. 30 Vaseem M, Mckerricher G, Shamim A. ACS Applied Materials & Interfaces, 2016, 8(1), 177. 31 Chen S P, Kao Z K, Lin J L, et al. ACS Applied Materials & Interfaces, 2012, 4(12), 7064. 32 Lin Z, Han D, Li S. Journal of Thermal Analysis and Calorimetry, 2012, 107(2), 471. 33 Woo K, Bae C, Jeong Y, et al. Journal of Materials Chemistry, 2010, 20(19), 3877. 34 Wu X, Shao S, Chen Z, et al. Nanotechnology, 2016, 28(3), 035203. 35 Kwon Y, Lee Y, Kim S, et al. Applied Surface Science, 2017, 396, 1239. 36 Kaltenbrunner M, Adam G, Glowacki E D, et al. Nature Materials, 2015, 14(10), 1032. 37 Hu L, Hecht D S, Gruener G. Applied Physics Letters, 2009, 94(8), 1273. 38 Hu L, Li J, Liu J, et al. Nanotechnology, 2010, 21(15), 155202. 39 Cao Q, Hur S, Zhu Z, et al. Advanced Materials, 2006, 18(3), 304. 40 Chen P, Chen H, Qiu J, et al. Nano Research, 2010, 3(8), 594. 41 Shin K Y, Hong J Y, Jang J. Advanced Materials, 2011, 23(18), 2113. 42 Gorkina A L, Tsapenko A P, Gilshteyn E P, et al. Carbon,2016,100, 501. 43 Gao Y, Shi W, Wang W, et al. Industrial & Engineering Chemistry Research, 2014, 53(43), 16777. 44 Secor E B, Prabhumirashi P L, Puntambekar K, et al. Journal of Physical Chemistry Letters, 2013, 4(8), 1347. 45 Hu H, Larson R G. Journal of Physical Chemistry B, 2006, 110(14), 7090. 46 Pu X, Li L, Liu M, et al. Advanced Materials, 2016, 28(1), 98. 47 Liang J, Tong K, Pei Q. Advanced Materials, 2016, 28(28), 5986. 48 Li Z, Guo D, Xiao P, et al. Micromachines, 2020, 11(3), 236. 49 Stewart I E, Kim M J, Wile B J. ACS Applied Materials & Interfaces, 2017, 9(2), 1870. 50 Nair N M, Pakkathillam J K, Kumar K, et al. ACS Applied Electronic Materials, 2020, 2(4), 1000. 51 Liu L, Lu Q, Yang S, et al. Advanced Materials Technologies, 2017, 3(1), 1700206. 52 Singh N, Khanna P K. Materials Chemistry & Physics,2007,104(2-3),367. 53 Chen C, Li J, Luo G, et al. Applied Surface Science, 2012, 258(24), 10180. 54 Faddoul R, Nadège R B, Blayo A. Materials Science & Engineering B, 2012, 177(13), 1053. 55 Meng Y, Ma T, Pavinatto F J, et al. ACS Applied Materials & Interfaces, 2019, 11(9), 9190. 56 Rane S B, Seth T, Phatak G J, et al. Journal of Materials Science Mate-rials in Electronics, 2004, 15(2), 103. 57 Luo S, Xu W, Wang N, et al. Journal of Coatings Technology & Research, 2013, 10(6), 769. 58 Lee I, Kim S, Yun J, et al. Nanotechnology, 2012, 23(48), 485704. 59 Sekine T, Ikeda H, Kosakai A, et al. Applied Surface Science, 2014, 294, 20. 60 Sekine T, Fukuda K, Kumaki D, et al. Nanotechnology, 2015, 26, 321001. 61 Jung J K, Choi S H, Kim I, et al. Philosophical Magazine, 2008, 88(3), 339. 62 Kim S, Won S, Sim G D, et al. Nanotechnology, 2013, 24(8), 085701. 63 Sim G D, Won S, Lee S B. Applied Physics Letters,2012,101(19),829. 64 Jung J K, Choi S H, Kim I, et al. Philosophical Magazine, 2008, 88(3), 339. 65 Kim B J, Haas T, Friederich A, et al. Nanotechnology, 2014, 25(12), 125706. 66 Cheng T, Wu Y W, Chen Y L, et al. Small, 2019, 15(34), 1901830. 67 Chen J, Gan L, Pan Z, et al. Nanomaterials, 2019, 9(11), 1515. 68 Ning H, Tao R, Fang Z, et al. Journal of Colloid & Interface Science, 2017, 487, 68. 69 Léopoldès J, Dupuis A, Bucknall D G, et al. Langmuir, 2012, 19(23), 9818. 70 Sirringhaus H, Kawase T, Friend R, et al. Science,2000,290(5499),2123. 71 Li Y, Lan L, Xiao P, et al. ACS Applied Materials & Interfaces, 2016, 8(30), 19643. 72 He M, Zhang Q, Zeng X, et al. Advanced Materials, 2013, 25(16), 2291. 73 Kim C, Nogi M, Suganuma K, et al. ACS Applied Materials & Interfaces, 2012, 4(4), 2168. 74 Hendriks C E, Smith P J, Perelaer J, et al. Advanced Functional Mate-rials, 2010, 18(7), 1031. 75 Berg A V D, Laat A D, Smith P J, et al. Journal of Materials Chemistry, 2007, 17(7), 677. 76 Doggart J, Wu Y, Liu P, et al. ACS Applied Materials & Interfaces, 2010, 2(8),2189. 77 Cao X, Wu F, Lau C, et al. ACS Nano, 2017, 11(2), 2008. 78 Sele C W, Vonwerne T, Friend R H, et al. Advanced Materials, 2005, 17(8), 997. 79 Hu H, Larson R G. Journal of Physical Chemistry B, 2006, 110(14), 7090. 80 Kuang M, Wang L, Song Y. Advanced Materials, 2015, 26(40), 6950. 81 Jang J, Kang H, Chakravarthula H C N, et al. Advanced Electronic Materials, 2015, 1(7), 1500086. 82 Tang W, Feng L, Zhao J, et al. Journal of Materials Chemistry C, 2014, 2(11), 1995. 83 Son Y H, Kang M K, Lee C S. Materials Chemistry and Physics, 2019, 223, 779. 84 Li Y, Lan L, Sun S, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 8194. |
|
|
|