INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
Preparation and Performance of AgNPs/MoS2 Composite SERS Substrate via Liquid Phase Exfoliation |
ZHOU Dan1, LIU Yiming1, WANG Zhigang2, YIN Jianzhong2, XU Qinqin2,*
|
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China |
|
|
Abstract Two-dimensional nanomaterials have demonstrated significant application potential in the field of surface-enhanced Raman scattering (SERS) because of their atomic thickness, tunable band gap, and high specific surface area. Metal nanoparticles can be added to 2D materials to greatly improve their SERS performance. This work presents a straightforward preparation process for composite materials made of AgNPs and MoS2, combining the advantages of AgNPs’ strong conductivity, good light transmittance, and bending flexibility, the method utilizes natural molybdenum disulfide powder to achieve one-step liquid-phase exfoliation and in-situ synthesis of AgNPs. The single factor analysis method was used to determine the influence range of the mass ratio of silver nitrate to molybdenum disulfide, mechanical stirring speed, and ultrasonic duration, and then the response surface analysis method was used to design and optimize the experimental conditions. When the mass ratio of silver nitrate to molybdenum disulfide is 5∶1, the mechanical stirring speed is 1 000 r/min, and the ultrasonic duration is 3 h, the prepared SERS substrate shows high sensitivity and good linear relationship when detecting low concentrations of malachite green, the enhancement factor reaches 4 orders of magnitude.
|
Published: 25 August 2024
Online: 2024-09-10
|
|
Fund:National Key R&D Program of China (2020YFA0710202), the National Natural Science Foundation of China (U1662130), Shanxi Province Science Foundation for Youths (202203021212300) and the Taiyuan University of Science and Technology Scientific Research Initial Funding (20212064). |
|
|
1 Zhu Y Z, Zhang Y J, Li J F, et al. Chinese Journal of Applied Chemistry, 2018, 38(9), 984 (in Chinese). 朱越洲, 张月皎, 李剑锋, 等. 应用化学, 2018, 35(9), 984. 2 Jackson J B, Halas N J. The Journal of Physical Chemistry B, 2001, 105(14), 2743. 3 Xue S, Zhao L, Zhao Y Q, et al. Materials Reports, 2021, 35(18), 18001 (in Chinese). 薛沙, 赵蕾, 赵友全, 等. 材料导报, 2021, 35(18), 18001. 4 Pang Y, Wang C, Lu L, et al. Biosensors and Bioelectronics, 2019, 130, 204. 5 Ouyang L, Yao L, Zhou T, et al. Analytica Chimica Acta, 2018, 1027, 83. 6 Xu W, Mao N, Zhang J. Small, 2013, 9(8), 1206. 7 Cao Y, Cheng Y, Sun M. Applied Spectroscopy Reviews, 2023, 58(1), 1. 8 Su S, Zhang C, Yuwen L, et al. ACS Applied Materials & Interfaces, 2014, 6(21), 18735. 9 Pan Q Z, Liu W X, Meng Z D, et al. Materials Reports, 2023, 37(19), 22030259 (in Chinese). 潘权子, 刘文晓, 孟则达, 等. 材料导报, 2023, 37(19), 22030259. 10 Zhou D, Yin J. Nano, 2020, 15(10), 2050118. 11 Steinhoff A, Kim J H, Jahnke F, et al. Nano Letters, 2015, 15(10), 6841. 12 Zhang L, Jing Z, Li Z, et al. Nanomaterials, 2022, 13(1), 187. 13 Belhout S A, Baptista F R, Devereux S J, et al. Nanoscale, 2019, 11(42), 19884. 14 Zhang X, Lai Z, Tan C, et al. Angewandte Chemie International Edition, 2016, 55(31), 8816. 15 Xu Y R, Wang Y Q, Chen H M, et al. Materials Reports, 2023, 37(7), 21060278. (in Chinese). 徐艳茹, 汪燕青, 陈焕明, 等. 材料导报, 2023, 37(7), 21060278. 16 Chen J, Liu G, Zhu Y Z, et al. Journal of the American Chemical Society, 2020, 142(15), 7161. 17 Kumar P, Khosla R, Soni M, et al. Sensors and Actuators B:Chemical, 2017, 246, 477. 18 Liu N, KimP, Kim J H, et al. ACS Nano, 2014, 8(7), 6902. 19 Bang G S, Nam K W, Kim J Y, et al. ACS Applied Materials & Interfaces, 2014, 6(10), 7084. 20 Qiao W, Yan S, He X, et al. RSC Advances, 2014, 4(92), 50981. 21 Wu Y, Cui S W, Tang J, et al. Food Chemistry, 2007, 105(4), 1599. 22 Munusamy T D, Chin S Y, Khan M M R. Chemical Engineering Research and Design, 2022, 177, 513. 23 Jetani G H, Rahmani M B. Optical Materials, 2022, 124, 111974. 24 Luu Q N, Doorn J M, Berry M T, et al. Journal of Colloid and Interface Science, 2011, 356(1), 151. 25 Cen Q, He Y, Xu M, et al. Journal of Chemical Physics, 2015, 142(11), 114201. 26 Jin Y, Ma P, Liang F, et al. Analytical Methods, 2013, 5(20), 5609. 27 Xiao G N, Man S Q. Spectroscopy Letters, 2013, 46(8), 577. 28 Cheng Z Q, Shi H Q, Yu P, et al. Acta Physica Sinica, 2018, 67(19), 197302. 29 Liang P, Wang Y, Wang P, et al. Nanoscale, 2017, 9(47), 18890. |
|
|
|