METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
Preparation and Hydrogen Evolution Performance of Porous Ni-Cu-Ti Electrode |
WU Liang1,2,3, ZHOU Zikun1,2,3, JI Li1,2,3, XIAO Yifeng1,2,3,*, ZHANG Qiankun1,2,3
|
1 School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China 2 Hunan Provincial Key Laboratory of Welding Robot and Application Technology, Xiangtan University, Xiangtan 411105, Hunan, China 3 Complex Track Processing Technology and Equipment Engineering Research Center of the Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, China |
|
|
Abstract Hydrogen production by electrolysis of water is an ideal method, and the catalytic activity of the electrode material determines the efficiency of water electrolysis. In this study, a porous Ni-Cu-Ti electrode was prepared by the powder metallurgy method. The microstructure and phase composition of the porous Ni-Cu-Ti electrodes were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. Meanwhile, electrochemical characterization of the electrodes were measured by cathodic polarization, electrochemical impedance spectroscopy, and cyclic voltammetry. The results show that when the sintering temperature was 1 000 ℃ and the mass ratio was 5.5∶3.5∶1, the porous Ni-Cu-Ti electrode exhibited the best hydrogen evolution performance. It only requires an overpotential of 79 mV (vs.RHE) to achieve a current density of 10 mA·cm-2 in 1 mol/L KOH, and its Tafel slope is 117.07 mV·dec-1.
|
Published:
Online: 2023-07-10
|
|
Fund:Natural Science Foundation of Hunan (2018JJ3505). |
|
|
1 Yu B, Chen X Y, Zhao Y, et al. Journal of Chemistry from Universities, 2022, 43(2), 130 (in Chinese). 俞彬, 谌小燕, 赵越, 等. 高等学校化学学报, 2022, 43(2), 130. 2 Cao M Q, Sun S L, Long C M, et al. New Chemical Materials, 2021, 49(6), 117 (in Chinese). 曹茂启, 孙赛兰, 龙成梅, 等. 化工新型材料, 2021, 49(6), 117. 3 Qiu L, Jiang L, Ye Z, et al. Electrochimica Acta, 2019, 325, 134962. 4 Gao Q, Zhang W, Shi Z, et al. Advanced Materials, 2019, 31(2), 1802880. 5 Hua W, Sun H H, Xu F, et al. Rare Metals, 2020, 39(4), 335. 6 Li J, Liu F, Yan S, et al. Guangzhou Chemical Industry, 2022, 50(1), 19 (in Chinese). 李进, 刘丰, 闫硕, 等. 广州化工, 2022, 50(1), 19. 7 El-Emam R S, Özcan H. Journal of Cleaner Production, 2019, 220, 593. 8 Cao J W, Zhang W Q, Li Y F, et al. Progress in Chemistry, 2021, 33(12), 2215 (in Chinese). 曹军文, 张文强, 李一枫, 等. 化学进展, 2021, 33(12), 2215. 9 Alam M, Kumar K, Dutta V. Energy Storage, 2019, 1(3), e60. 10 Liu J, Zhong C F. China Energy, 2019, 41(2), 32 (in Chinese). 刘坚, 钟财富. 中国能源, 2019, 41(2), 32. 11 He L, Liu J, Hu B, et al. Journal of Power Sources, 2019, 414, 333. 12 Hinnemann B, Moses P G, Bonde J, et al. Journal of the American Chemical Society, 2005, 127(15), 5308. 13 Zhang G L. Journal of Henan Institute of Technology (Natural Science Edition), 2018, 30(2), 57 (in Chinese). 张国良. 河南工程学院学报(自然科学版), 2018, 30(2), 57. 14 Zhou Q, Li Z Y. Journal of Inorganic Chemistry, 2018, 34(12), 2188(in Chinese). 周琦, 李志洋. 无机化学学报, 2018, 34(12), 2188. 15 Zhang X, Li Y, Guo Y, et al. International Journal of Hydrogen Energy, 2019, 44(57), 29946. 16 Sun Q Q, Cao B Y, Zhou C S, et al. Journal of Chemistry in Universities, 2020, 41(6), 1287 (in Chinese). 孙强强, 曹宝月, 周春生, 等. 高等学校化学学报, 2020, 41(6), 1287. 17 Zhang L, Li S C. Materials Reports, 2011, 25(10), 126 (in Chinese). 张磊, 李世春. 材料导报, 2011, 25(10), 126. 18 Li X D, Cao D H, Feng X D, et al. Rare Metal Materials and Engineering, 2021, 50(8), 2905 (in Chinese). 李喜德, 曹德华, 冯新东, 等. 稀有金属材料与工程, 2021, 50(8), 2905. 19 Jiang Y, He Y, Gao H. Journal of Materials Science & Technology, 2021, 74, 89. 20 Hu Y D, He Y H, Li X D, et al. Materials Reports, 2020, 34(24), 24074 (in Chinese). 胡洋东, 贺跃辉, 李喜德, 等. 材料导报, 2020, 34(24), 24074. 21 Shen B, He Y, He Z, et al. Journal of Colloid and Interface Science, 2022, 605, 637. 22 Yu L, Lei T, Nan B, et al. Energy, 2016, 97, 498. 23 He J, Zu L, Liu X, et al. Journal of Porous Materials, 2019, 26(5), 1533. 24 Peng W L, Yuan B. Materials Reports, 2021, 35(9), 09174 (in Chinese). 彭伟良, 袁斌. 材料导报, 2021, 35(9), 09174. 25 Abdi F F, van de Krol R. The Journal of Physical Chemistry C, 2012, 116(17), 9398. 26 Meng H, Zhang W, Ma Z, et al. ACS Applied Materials & Interfaces, 2018, 10(3), 2430. 27 Li Y, Tan X, Hocking R K, et al. Nature Communications, 2020, 11(1), 2720. 28 Dai J, Zhu Y, Tahini H A, et al. Nature Communications, 2020, 11(1), 5657. 29 Darband G B, Aliofkhazraei M, Rouhaghdam A S. Journal of Colloid and Interface Science, 2019, 547, 407. 30 Qian H, Li K, Mu X, et al. International Journal of Hydrogen Energy, 2020, 45(33), 16447. 31 Wu Y, Zhang Y, Wang Y, et al. International Journal of Hydrogen Energy, 2021, 46(53), 26930. 32 Wang Q M, Jin J, Kong Y, et al. Fiber Composite Materials, 2019, 36(3), 38 (in Chinese). 王清民, 金晶, 孔玉, 等. 纤维复合材料, 2019, 36(3), 38. 33 Wang Y, Sheng M Q, Weng W P, et al. Journal of Materials Research, 2017, 31(10), 773 (in Chinese). 王玉, 盛敏奇, 翁文凭, 等. 材料研究学报, 2017, 31(10), 773. 34 Wang S, Deng Z, Li J, et al. IOP Conference Series Materials Science and Engineering, 2019, 592(1), 012043. 35 Feng J W, Zhou Q. Journal of Inorganic Chemistry, 2019, 35(10), 1746 (in Chinese). 冯基伟, 周琦. 无机化学学报, 2019, 35(10), 1746. 36 Guo Y J, Ye F, Guo D, et al. Materials Reports, 2018, 32(23), 4084 (in Chinese). 郭亚杰, 叶锋, 郭栋, 等. 材料导报, 2018, 32(23), 4084. |
|
|
|