Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 228-233    https://doi.org/10.11896/j.issn.1005-023X.2018.02.014
  物理   材料研究 |材料 |
黄铜在酸碱盐腐蚀介质中的腐蚀研究
李欣琳1,金国1,康丽霞2,庞学佳3,曹蔚琦1,王海斗4,徐滨士4,崔秀芳1
1 哈尔滨工程大学材料科学与化学工程学院,腐蚀科学与表面技术研究所,哈尔滨150001
2 陆军航空装备发展办公室,北京 100000
3 中船重工703研究所,哈尔滨 150078
4 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
Study of Corrosion Behavior of HSn62-1 in Acid,Alkali and Salt Solution
Xinlin LI1,Guo JIN1,Lixia KANG2,Xuejia PANG3,Weiqi CAO1,Haidou WANG4,Binshi XU4,Xiufang CUI1
1 Institute of Corrosion Science and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2 Army Aviation Equipment Development Office, Beijing 100000
3 The 703 Research Institute of CSIC, Harbin 150078
4 Academy of Armored Force Engineering, National Key Laboratory for Remanufacturing, Beijing 100072
下载:  全 文 ( PDF ) ( 7685KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用SEM、EPMA、电化学曲线测量、XPS等检测技术,研究了HSn62-1黄铜在pH值为2的H2SO4溶液、pH值为13的NaOH溶液和3.5%(质量分数)的NaCl溶液中的腐蚀形貌、腐蚀产物、腐蚀类型,并针对不同的腐蚀机制,建立了化学反应模型,对腐蚀机制进行了分析。结果表明,HSn62-1在H2SO4溶液中腐蚀失重明显,且其溶解方式为选择性溶解,其腐蚀是以析氢腐蚀为主的混合腐蚀机制;在NaCl溶液和NaOH溶液中的腐蚀为溶解-再沉积机制,溶解速度较为缓慢,在NaCl溶液中为析氢腐蚀,在NaOH溶液中为吸氧腐蚀。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欣琳
金国
康丽霞
庞学佳
曹蔚琦
王海斗
徐滨士
崔秀芳
关键词:  不同腐蚀介质  黄铜  腐蚀机制    
Abstract: 

Scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electro probe micro-analysis (EPMA), open-circuit potential and potentiodynamic polarization and X-ray photoelectron spectroscopy (XPS) were used to explore the corrosion mechanism and morphology of HSn62-1 brass in H2SO4 solution(pH=2),NaOH solution(pH=13) and NaCl solution(3.5%, mass fraction). The results indicated that there existed obvious weight loss in H2SO4 solution compare to NaOH solution and NaCl solution. Numerous corrosion products were detected except CuO and ZnO. The dezincification of HSn62-1 in H2SO4 solution can be explained as selective dissolution and its cathodic reactions were dominated by oxygen reduction and hydrogen reaction. In contrast, the dezincification mechanism was simultaneous dissolution of both zinc and copper and with the subsequent re-deposition of copper. Besides the cathodic reaction was hydrogen evolution corrosion in NaCl solution and oxygen evolution corrosion in NaOH solution.

Key words:  different corrosion mediators    HSn62-1    corrosion mechanism
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG174.3  
基金资助: 国家自然科学基金(51575118;51375106);中央高校基金重大培育计划(HEUCFP-2016154);黑龙江省博士后基金(LBH-214050)
引用本文:    
李欣琳,金国,康丽霞,庞学佳,曹蔚琦,王海斗,徐滨士,崔秀芳. 黄铜在酸碱盐腐蚀介质中的腐蚀研究[J]. 《材料导报》期刊社, 2018, 32(2): 228-233.
Xinlin LI,Guo JIN,Lixia KANG,Xuejia PANG,Weiqi CAO,Haidou WANG,Binshi XU,Xiufang CUI. Study of Corrosion Behavior of HSn62-1 in Acid,Alkali and Salt Solution. Materials Reports, 2018, 32(2): 228-233.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.014  或          http://www.mater-rep.com/CN/Y2018/V32/I2/228
图1  HSn62-1在酸性介质中的腐蚀形貌:(a)腐蚀6 h,(b)腐蚀30 h
图2  HSn62-1在pH=2的H2SO4溶液的腐蚀产物的X射线光电子能谱分析
图3  HSn62-1在pH=2的H2SO4介质中浸泡30 h后的EPMA图
图4  HSn62-1在NaOH溶液中的腐蚀形貌:(a)腐蚀6 h,(b)腐蚀30 h
图5  HSn62-1在pH=13的NaOH溶液中的腐蚀产物的X射线光电子能谱分析
图6  HSn62-1在NaOH溶液中浸泡30 h后的面扫描图综上,HSn62-1黄铜在NaOH溶液中发生氧去极化反应,溶解-再沉积理论是黄铜在碱性腐蚀环境下遵循的脱锌腐蚀理论,在这个过程中由于铜的腐蚀电位比合金要高,铜在被腐蚀后会因其电位而被回镀到合金表面,同时在试样表面的Cu(OH)2蓝色沉淀是由Cu2+与OH-反应生成。其具体反应机理如下:
图7  HSn62-1在3.5%(质量分数)NaCl溶液中的腐蚀形貌:(a)腐蚀6 h;(b)腐蚀30 h
图8  HSn62-1在NaCl溶液中的腐蚀产物的X射线光电子能谱分析
图9  HSn62-1浸泡在NaCl介质中30 h后的EPMA图
图10  HSn62-1在三种溶液中随时间变化的质量损失曲线
图11  HSn62-1在三种溶液中的动电位极化曲线
1 Kumar S, Narayanan T S N, Manimaran A , et al. Effect of lead content on the dezincification behaviour of leaded brass in neutral and acidified 3.5% NaCl solution[J]. Materials Chemistry and Physics, 2007,106(1):134.
2 Chen Jie, Zheng Qifei, Sun Shuangqin , et al. Long-term atmospheric corrosion behavior of naval brass HSn62-1[J]. The Chinese Journal of Nonferrous Metals, 2011,21(3):577(in Chinese).
3 陈杰, 郑弃非, 孙霜青 , 等. 海军黄铜HSn62-1的长期大气腐蚀行为[J]. 中国有色金属学报, 2011,21(3):577.
4 3 王超, 钟庆东, 周国治 , 等. H62黄铜在电解质溶液中的脱锌腐蚀机制研究[ C]∥2008年全国冶金物理化学学术会议专辑(上册).贵阳, 2008.
5 El-Sherif R M, Ismail K M, Badawy W A . Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions[J]. Electrochimica Acta, 2004,49(28):5139.
6 5 Radovanovi c ' M B , Petrovi c ' M B , Simonovi c ' A T , et al. Cysteine as a green corrosion inhibitor for Cu37Zn brass in neutral and weakly alkaline sulphate solutions[J]. Environmental Science and Pollution Research, 2013,20(7):4370.
7 6 Liu Jianfeng, Chen Yisheng, Zhu Zhiyun, et al. The effect of processing techniques on corrosion resistance of RE HSn62-1 brass[J].Aluminium Processing, 2009(2):24(in Chinese).
8 刘坚锋, 陈一胜, 朱志云 , 等. 加工工艺对稀土HSn62-1黄铜耐脱锌腐蚀性能的影响[J].铝加工, 2009(2):24.
9 Zhao Yuehong, Lin Leyun, Wang Zhenghai . Influence of microstructure on local corrosion sensitivity of HSn70-1A copper alloy[J]. Corrosion Science and Protection Technology, 2011,23(6):479(in Chinese).
10 赵月红, 林乐耘, 王振海 . 显微组织对黄铜局部腐蚀敏感性的影响[J]. 腐蚀科学与防护技术, 2011,23(6):479.
11 Zhang Juan, Tang Ning, Shang Yongjia , et al. The influence of alloy elements on the corrosion resistance of brass and mechanism[J]. Corrosion and Protection, 2012,33(7):605(in Chinese).
12 张娟, 唐宁, 尚用甲 , 等. 合金元素对黄铜耐腐蚀性能的影响和作用机理[J]. 腐蚀与防护, 2012,33(7):605.
13 Yohai L, Vázquez M, Valcarce M B . Brass corrosion in tap water distribution systems inhibited by phosphate ions[J]. Corrosion Science, 2011,53(3):1130.
14 Allam N K, Nazeer A A, Ashour E A . A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments[J]. Journal of Applied Electrochemistry, 2009,39(7):961.
15 Valcarce M B, De Sanchez S R, Vazquez M . Brass dezincification in a tap water bacterial suspension[J]. Electrochimica Acta, 2006,51(18):3736.
16 12 路俊攀, 李湘海 , 中国有色金属工业协会. 加工铜及铜合金金相图谱[M]. 长沙: 中南大学出版社, 2010.
17 Baruj A, Granada M, Arneodo Larochette P , et al. Primordial hexagonal phase formation during the bcc dezincification of the β Cu-Zn single crystalline surface: Matrix instabilization and transformation path[J]. Journal of Alloys and Compounds, 2009,481:129.
18 Troiani H E, Ahlers M. The formation of an intermediate structure during the dezincification of β Cu-Zn alloys and its relevance for the martensitic transformation[J].Materials Science and Engineering: A 1999, 273- 275:200.
19 Troiani H E, Baruj A. In situ optical microscopy study of a phase transformation induced by the dezincification of beta Cu-Zn[J]. Materials Science and Engineering: A 2007, s454- 455(16):441.
20 Assouli B, Srhiri A, Idrissi H . Characterization and control of selective corrosion of α, β'-brass by acoustic emission[J]. NDT & E International, 2003,36(2):117.
21 Wang Dan, Xie Fei, Wu Ming et al. Effect of cathode potentials on stress corrosion behavior of X80 pipeline steel in simulated alkaline soil solution[J]. Journal of Central South University (Science and Technology), 2014,45(9):2986(in Chinese).
22 王丹, 谢飞, 吴明 , 等. 阴极电位对X80管线钢在碱性土壤模拟溶液中应力腐蚀行为的影响[J]. 中南大学学报(自然科学版), 2014,45(9):2986.
23 He H, Zhang T, Zhao C , et al. Effect of alternating voltage passivation on the corrosion resistance of duplex stainless steel[J]. Journal of Applied Electrochemistry, 2009,39(5):737.
24 Sun Zhaodong, Du Min, Zhang Jin , et al. The cathodic polarization behavior of 316L stainless steel in seawater[J]. Materials Science & Technology, 2011,19(1):36(in Chinese).
25 孙兆栋, 杜敏, 张静 , 等. 316L不锈钢在海水中的阴极极化行为研究[J]. 材料科学与工艺, 2011,19(1):36.
26 20 魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984.
[1] 杨超, 陶鲭驰, 丁言飞. 无铅环保黄铜研究新进展[J]. 材料导报, 2019, 33(13): 2109-2118.
[2] 王宏明,储强泽,李桂荣,程江峰,朱弋. 静磁场深冷处理对铝黄铜组织和性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 82-86.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed