Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22060277-6    https://doi.org/10.11896/cldb.22060277
  金属与金属基复合材料 |
表面修饰石墨烯制备工艺及其在金属材料中的应用研究
蔡锦文, 冯可芹*, 王海波, 刘艳芳, 陈思潭
四川大学机械工程学院,成都 610065
Preparation of Surface Modified Graphene and Its Applications in Metallic Materials
CAI Jinwen, FENG Keqin*, WANG Haibo, LIU Yanfang, CHEN Sitan
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 12876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决石墨烯在金属基复合材料应用中易团聚、难分散、与金属基体之间的润湿性差、高温下易与Al、Ti、Fe等金属发生界面反应的问题,对石墨烯进行表面修饰制得镀铜石墨烯,研究了镀覆过程中镀覆温度、镀覆时间、镀液pH对镀铜石墨烯镀层连续性、完整性的影响,优化镀覆工艺参数,获得了质量优良的表面修饰石墨烯;并将其分别添加到铁基摩擦材料和W-Mo-Cu复合材料中,对其作用效果进行了研究。结果表明:石墨烯在50 ℃、pH为12.5的化学镀液中镀覆30 min可以获得连续性、完整性较好的镀层,从而制得缺陷密度较小、质量较好的表面修饰石墨烯;在铁基摩擦材料中添加0.8%(质量分数)表面修饰石墨烯可以使材料晶粒细化并获得片层间距较小的珠光体组织,材料硬度提高30%,磨损率降低约70%,摩擦系数下降约12%;添加了0.2%(质量分数)表面修饰石墨烯的W-Mo-Cu材料,其组织均匀性和致密度均获得了提高,电导率提升约21%,硬度提高8%。证实了表面修饰石墨烯的添加能够促进金属基复合材料综合性能的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡锦文
冯可芹
王海波
刘艳芳
陈思潭
关键词:  表面修饰石墨烯  工艺参数  铁基摩擦材料  W-Mo-Cu复合材料    
Abstract: In the application of metal matrix composites, graphene is difficult to disperse, easy to react with Al, Ti, Fe and other metals at high temperature and the wettability between graphene and metal is poor. In order to solve these problems, surface modified graphene was prepared by electroless copper plating on graphene. The effects of plating temperature, plating time and pH value of plating solution on the continuity and integrity of coating on graphene were studied. The process parameters of plating were optimized, and the surface modified graphene with excellent quality was obtained. The surface modified graphene was added to the iron-based friction material and W-Mo-Cu composite, respectively, and its effect was studied. The results show that the coating with good continuity and integrity can be obtained in the electroless plating bath of 50 ℃ and pH 12.5 for 30 min, and the surface modified graphene with small defect density and good quality can be prepared. The addition of 0.8wt% surface modified graphene in iron-based friction material can refine the grain size of the material and obtain pearlite with small lamellar spacing. The hardness of the material increases by 30%, the wear rate decreases by about 70%, and the friction coefficient decreases by about 12%. With the addition of 0.2wt% surface modified graphene, the microstructure uniformity and density of W-Mo-Cu material were improved, the conductivity was increased by about 21%, and the hardness was increased by 8%. It is proved that the addition of surface modified graphene can improve the comprehensive properties of metal matrix composites.
Key words:  surface modified graphene    process parameter    iron-based friction material    W-Mo-Cu composite
发布日期:  2024-01-16
ZTFLH:  TF124  
基金资助: 国家自然科学基金(51674171)
通讯作者:  冯可芹,四川大学教授,博士研究生导师。主要从事金属-陶瓷复合材料、钒钛资源综合利用、外场辅助材料的合成与制备、材料制备和冶金过程的物理化学等方面的研究。先后在国内外核心学术期刊上发表学术论文140余篇,其中 SCI收录53篇,EI 收录82篇。kqfeng@scu.edu.cn   
作者简介:  蔡锦文,2021年6月于四川大学获得工学学士学位。现为四川大学信机械工程学院硕士研究生,在冯可芹教授的指导下进行研究。目前主要研究领域为碳材料化学镀、W-Mo-Cu合金以及相关复合材料的制备。
引用本文:    
蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
CAI Jinwen, FENG Keqin, WANG Haibo, LIU Yanfang, CHEN Sitan. Preparation of Surface Modified Graphene and Its Applications in Metallic Materials. Materials Reports, 2024, 38(1): 22060277-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060277  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22060277
1 Wang J Q, Lei W N, Xue Z M, etal. Journal of Materials Engineering, 2018, 46(12), 18 (in Chinese).
王剑桥, 雷卫宁, 薛子明, 等. 材料工程, 2018, 46(12), 18.
2 Ling Z C, Yan C X, Shi Q N, et al. Materials Reports, 2015, 29(7), 143 (in Chinese).
凌自成, 闫翠霞, 史庆南, 等. 材料导报, 2015, 29(7), 143.
3 Xiao H, Ma G, Ye J, et al. Vacuum, 2021, 191, 110281.
4 Wang J, Guo L, Lin W, et al. New Carbon Materials, 2019, 34(3), 275.
5 Hu Z, Chen F, Xu J, et al. Composites Part B: Engineering, 2018, 134, 133.
6 He X, Zou G, Xu Y, et al. Progress in Natural Science: Materials International, 2018, 28(4), 416.
7 Gao Y, Zou J, Wang X, et al. Nanomaterials, 2020, 10(1), 100.
8 Zhao Y C, Tang Y, Zhao M C, et al. Advanced Engineering Materials, 2019, 21(8), 1900314.
9 Fan L L, Zhou M Y, Qu X N, et al. Hot Working Technology, 2018, 47(4), 8 (in Chinese).
范玲玲, 周明扬, 屈晓妮, 等. 热加工工艺, 2018, 47(4), 8.
10 Bartolucci S F, Paras J, Rafiee M A, et al. Materials Science and Engineering: A, 2011, 528(27), 7933.
11 Yue H, Yao L, Gao X, et al. Journal of Alloys and Compounds, 2017, 691, 755.
12 Nie H, Fu L, Zhu J, et al. Materials, 2018, 11(4), 600.
13 Wei B Z, Chen W C, Zhu X, et al. Powder Metallurgy Technology, 2018, 36(5), 363 (in Chinese).
魏邦争, 陈闻超, 朱曦, 等. 粉末冶金技术, 2018, 36(5), 363.
14 Chen F, Ying J, Wang Y, et al. Carbon, 2016, 96, 836.
15 Zhang D, Zhan Z. Journal of Alloys and Compounds, 2016, 654, 226.
16 Yang L. Fabrication and properties of aluminum/Cu-graphene compo-sites. Master’s Thesis, South China University of Technology, China, 2021 (in Chinese).
杨莲. 镀铜石墨烯/铝复合材料的制备与性能研究. 硕士学位论文, 华南理工大学, 2021.
17 Peng Q, Xiong W, Tan X, et al. Scientific Reports, 2022, 12(1), 21159.
18 Chen J F, Zhang J N, Pan J M, et al. 1000 questions on electroless pla-ting technology, China Machine Press, China, 2015, pp. 223, (in Chinese).
陈加福, 张佳楠, 潘继民, 等. 化学镀技术1000问, 机械工业出版社, 2015, pp. 223.
19 Luo J M, Xie J, Xu J L, et al. Materials Reports, 2021, 35(22), 22098 (in Chinese).
罗军明, 谢娟, 徐吉林, 等. 材料导报, 2021, 35(22), 22098.
20 Xie J W. Effect of graphene surface loaded metal on properties of iron-based powder metallurgy parts. Master’s Thesis, Donghua University, China, 2019 (in Chinese).
谢佳伟. 石墨烯表面负载金属对铁基粉末冶金件性能的影响. 硕士学位论文, 东华大学, 2019.
21 Yue H F, Feng K Q, Li Y, et al. Transactions of Materials and Heat Treatment, 2015, 36(10), 16 (in Chinese).
岳慧芳, 冯可芹, 李莹, 等. 材料热处理学报, 2015, 36(10), 16.
22 Song Y, Chen Y, Liu W W, et al. Materials & Design, 2016, 109, 256.
23 Zhao D P. Information Recording Materials, 2020, 21(2), 16 (in Chinese).
赵丹萍. 信息记录材料, 2020, 21(2), 16.
24 Zhao K K, Zhang K, Liu P, et al. Nonferrous Metal Materials and Engineering, 2020, 41(1), 1 (in Chinese).
赵看看, 张柯, 刘平, 等. 有色金属材料与工程, 2020, 41(1), 1.
25 Wang X C, Zhang X Y. Materials modern analysis and testing technology, National Defense Industry Press, 2009, pp. 82, China (in Chinese).
王晓春, 张希艳. 材料现代分析与测试技术, 国防工业出版社, 2009, pp. 82.
26 Song Y, Chen Y, Liu W W, et al. Materials & Design, 2016, 109, 256.
27 Dong L, Chen W, Zheng C, et al. Journal of Alloys and Compounds, 2017, 695, 1637.
[1] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[2] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[3] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[4] 陈远豪, 肖黎, 梁昌兴, 罗月婷, 龚恒翔. 基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析[J]. 材料导报, 2023, 37(11): 21120097-6.
[5] 方乃文, 黄瑞生, 武鹏博, 尹立孟, 龙伟民, 徐锴, 曹浩, 邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 22010253-1.
[6] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[7] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[8] 杨凯欣, 孙文磊, 肖奇, 邢学峰, 陈子豪. 基于田口灰色关联法对Fe06-15%TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 21080157-9.
[9] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[10] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[11] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[12] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[13] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[14] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[15] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed