Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 29-37    https://doi.org/10.11896/j.issn.1005-023X.2017.011.004
  材料综述 |
Ti-O Magnéli相氧化物的性质、制备与应用研究进展*
霍玲玲1, 乔丹1, 王义智1, 李钒1, 黄一兵2
1 北京工业大学环境与能源工程学院化学化工系,北京绿色分离与催化重点实验室,北京 100124;
2 长沙钛能科技有限公司,长沙 410003
Ti-O Magnéli Phase Oxides: Characteristics, Synthesis and Applications
HUO Lingling1, QIAO Dan1, WANG Yizhi1, LI Fan1, HUANG Yibing2
1 Beijing Key Laboratory of Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124;
2 Ti-Dynamics Co. Ltd, Changsha 410003
下载:  全 文 ( PDF ) ( 2129KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ti-O Magnéli相氧化物因具有特殊的结构和性质自发现以来就备受关注。Ti-O Magnéli相氧化物优良的电子导电性、稳定性以及耐腐蚀性使得其在电化学领域应用广泛。综述了Ti-O Magnéli相氧化物的组成、结构、性质及其主要的制备方法,并总结归纳了该材料的主要应用。提供了Ti-O Magnéli相氧化物未来合成与应用研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍玲玲
乔丹
王义智
李钒
黄一兵
关键词:  Ti-O Magnéli相  电子导电氧化物  材料制备  电极特性    
Abstract: Ti-O Magnéli phase oxides are of great interest due to their high electronic conductivity, stability and anti-corrosion property. These properties lead to broad applications in the electrochemical, energy industry and many other fields. The compositions, structure and properties of Ti-O Magnéli phase oxides, as well as the synthesis methods and applications are summarized. Recently, there are intensive researches highlighting the wide applications of Ti-O Magnéli phase oxides in advanced energy systems. Some new ideas of synthesis and application of Ti-O Magnéli phase are also discussed.
Key words:  Ti-O Magnéli phase    electronic conductive oxide    material synthesis    electrode performance
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  O646  
  TB321  
基金资助: 国家自然科学基金(51472009;51172007)
通讯作者:  李钒:通讯作者,男,1973年生,博士,副研究员,主要从事冶金与能源材料物理化学研究 E-mail:vanadiumli@bjut.edu.cn   
作者简介:  霍玲玲:女,1990年生,硕士,主要从事能源材料物理化学研究 E-mail:huolingling2016@163.com
引用本文:    
霍玲玲, 乔丹, 王义智, 李钒, 黄一兵. Ti-O Magnéli相氧化物的性质、制备与应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 29-37.
HUO Lingling, QIAO Dan, WANG Yizhi, LI Fan, HUANG Yibing. Ti-O Magnéli Phase Oxides: Characteristics, Synthesis and Applications. Materials Reports, 2017, 31(11): 29-37.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.004  或          http://www.mater-rep.com/CN/Y2017/V31/I11/29
1 Migas D B, Shaposhnikov V L, Borisenko V E. Tungsten oxides. Ⅱ. The metallic nature of Magnéli phases[J]. J Appl Phys,2010,108(9):093714.
2 Ressler T.Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen[J]. J Catal, 2002, 210(1):67.
3 Schwingenschlogl U, Eyert V. The vanadium Magnéli phase VnO2n-1[J]. Annalen der Physik,2004,13(9):475.
4 Okamoto H. O-Ti (Oxygen-Titanium)[J].J Phase Equilibria Diffusion ,2011,32(5):473.
5 Bartholomew R F, Frankl D R. Electrical properties of some tita-nium oxide[J]. Phys Rev,1969,187(3):828.
6 Gusev A A, Avvakumov E G, et al. Ceramic electrodes based on Magnéli phase of titanium oxides [J]. Sci Sinter,2007,39(1):51.
7 Walsh F C, Wills R G A. The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes[J]. Electrochim Acta,2010,55(22):6342.
8 Smith J R, Walsh F C, Clarke R L. Electrodes based on Magnéli phase titanium oxides:The properties and applications of Ebonex® materials[J]. J Appl Electrochem,1998,28(10):1021.
9 Ioroi T, Senoh H, Yamazaki S, et al. Stability of corrosion-resistant Magnéli phase Ti4O7-supported PEMFC catalysts at high potentials[J]. J Electrochem Soc, 2000,155(4):B321.
10 West R C. CRC handbook of chemistry and physics[M]. CRC Press,1987.
11 Woydt M. Lifetime lubricated engines using triboreactive materials[C]//The RTO AVT Special Lists′Meeting on “the Control and Reduction of Wear in Militery Platforms” .Williamsburg,USA,2003.
12 Igartua A, Fernández X, et al. Biolubricants and triboreactive materials for automotive applications[J]. Tribol Int,2009,42(4):561.
13 Park S Y, Mho S I, Chi E O, et al. Characteristics of Pt thin films on the conducting ceramics TiO and Ebonex (Ti4O7) as electrode materials[J]. Thin Solid Films,1995, 258(1):5.
14 Bejan D, Malcolm J D, Morrison L, et al. Mechanistic investigation of the conductive ceramic Ebonex® as an anode material[J]. Electrochim Acta,2009,54(23):5548.
15 Tominaka S, Tsujimoto Y, et al. Synthesis of nanostructured reduced titanium oxide: Crystal structure transformation maintaining nanomorphology[J]. Angew Chem Int Ed,2011,50(32):7418.
16 Zhang Hao, Cao Gaoping,Xu Bin,et al. Fabrication of Magnéli phase titanium suboxides and its application[J]. Chinese Battery Ind,2011,16(6):363(in Chinese).
张浩, 曹高萍, 徐斌, 等. Magnéli相亚氧化钛的制备及其应用[J]. 电池工业,2011, 16(6):363.
17 Li X, Zhu A L, Qu W, et al. Magnéli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries[J]. Electrochim Acta,2010, 55(20):5891.
18 Yao Chuanhao. Preparation and investigation of Ti4O7 for support of Pt catalyst for fuel cell [D]. Beijing: Beijing University of Technology,2012(in Chinese).
姚传好. 燃料电池用Ti4O7的合成及其载Pt催化剂的性能研究[D]. 北京:北京工业大学,2012.
19 Regonini D, Adamaki V, et al. AC electrical properties of TiO2 and Magnéli phases, TinO2n-1[J]. Solid State Ionics,2012,229:38.
20 Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nat Commun,2014, 5:4759.
21 Watanabe M. Raman spectroscopy of charge-ordered states in Magnéli titanium oxides[J]. Phys Status Solidi C,2009,6(1):260.
22 Graves J E, Pletcher D, Clarke R L, et al. The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part 2: Ozone ge-neration at Ebonex and Ebonex/lead dioxide anodes[J]. J Appl Electrochem,1992,22(3):200.
23 Yang Fan. Preparation of catalystsupport material by reduction from transition metal (Ti, Mo)oxide and electrochemical performance of the catalysts[D]. Beijing: Beijing University of Technology,2013(in Chinese).
杨帆.过渡金属(Ti,Mo)氧化物还原制备载体及电催化性能研究[D].北京:北京工业大学,2013.
24 Wang Yizhi. Primary investigations of Magnéli phase compounds and the Magnéli compounds based composites for some electrochemical applications [D]. Beijing:Beijing University of Technology,2016(in Chinese).
王义智. Magnéli相化合物及其复合材料电化学应用初探[D]. 北京:北京工业大学, 2016.
25 Nie Binbin. Related experimental study on the preparation of Ti4O7 by reducing TiO2 in gas phase[D]. Beijing: University of Science and Technology Beijing,2016(in Chinese).
聂斌斌. TiO2气相还原制备Ti4O7的相关实验研究[D]. 北京:北京科技大学,2016.
26 Ertekin Z, Tamer U, Pekmez K. Cathodic electrochemical deposition of Magnéli phases TinO2n-1 thin films at different temperatures in acetonitrile solution[J]. Electrochim Acta, 2015,163:77.
27 Hirasawa M, Seto T, Orii T, et al. Synthesis of size-selected TiOx nanoparticles[J]. Appl Surf Sci,2002,197:661.
28 Tang C, Zhou D, Zhang Q. Synthesis and characterization of Magnéli phases: Reduction of TiO2 in a decomposed NH3 atmosphere[J]. Mater Lett,2012,79:42.
29 Zhang L, Kim J, Zhang J, et al. Ti4O7 supported Ru@Pt core-shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction[J]. Appl Energy,2013,103:507.
30 Sen W, Sun H, Yang B, et al. Preparation of titanium carbide powders by carbothermal reduction of titania/charcoal at vacuum condition[J]. Int J Refractory Metals Hard Mater, 2010,28(5):628.
31 Toyoda M, Yano T, Tryba B, et al. Preparation of carbon-coated Magnéli phases TinO2n-1 and their photocatalytic activity under visible light[J]. Appl Catal B,2009,88(1):160.
32 Portehault D, Maneeratana V, Candolfi C, et al. Facile general route toward tunable magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposites[J]. Am Chem Soc Nano,2011,5(11):9052.
33 Yao C, Li F, Li X, et al. Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis[J]. J Mater Chem,2012,22(32):16560.
34 Wang Y, Li F, Yan B, et al. Kinetic study on preparation of subs-toichiometric titanium oxide via carbothermal process[J]. J Thermal Anal Calorimetry,2015,122(2):635.
35 Ioroi T, Kageyama H, Akita T, et al. Formation of electro-conductive titanium oxide fine particles by pulsed UV laser irradiation[J]. Phys Chem Chem Phys,2010,12(27):7529.
36 Andersson S, et al. Phase analysis stu-dies on the titanium-oxygen system[J]. Acta Chem Scandinavica,1957,11(10):1641.
37 Zhang X, Liu Y, et al. Fabrication and characterisation of Magnéli phase Ti4O7 nanoparticles[J].Micro Nano Lett,2013,8(5):251.
38 Tettamanti M, Mojana C, et al. Discrete anode for cathodic protection of reinforced concrete: US Patent 7,807,026[P].2010-10-05.
39 Ellis K, Hill A, et al. The performance of Ebonex® electrodes in bipolar lead-acid batteries[J]. J Power Sources,2004,136(2):366.
40 Loyns A C, et al. Bipolar batteries based on Ebonex® technology[J]. J Power Sources,2005,144(2):329.
41 Han W Q, Wang X L. Carbon-coated Magnéli-phase TinO2n-1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells[J]. Appl Phys Lette,2010,97(24):243104.
42 Tao X, Wang J, Ying Z, et al. strong sulfur binding with conducting Magneéli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Lett,2014, 14(9):5288.
43 Ioroi T, Siroma Z, Fujiwara N, et al. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells[J]. Electrochem Commun,2005, 7(2):183.
44 Ioroi T, et al. Corrosion-resistant PEMFC cathode catalysts based on a Magnéli-phase titanium oxide support synthesized by pulsed UV laser irradiation[J]. J Electrochem Soc,2011,158(10):C329.
45 Kundu D, Black R, Berg E J, et al. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries[J]. Energy Env Sci,2015,8(4):1292.
46 Zaky A M, Chaplin B P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment[J]. Env Sci Technol,2013,47(12):6554.
47 Radecka M, Trenczek-Zajac A, Zakrzewska K, et al. Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2-x[J]. J Power Sources,2007,173(2):816.
48 Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory[J]. Nat Nanotechnol,2010,5(2):148.
49 Ohkoshi S, Tsunobuchi Y, Matsuda T, et al. Synthesis of a metal oxide with a room-temperature photoreversible phase transition[J]. Nat Chem,2010,2(7):539.
50 Canillas M, Chinarro E, et al. Physico-chemical properties of the Ti5O9 Magneli phase with potential application as a neural stimulation electrode[J]. J Mater Chem B,2013,1(46):6459.
[1] 马浩, 杨瑞霞, 李春静. 层状二硫化钼材料的制备和应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 7-14.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed