Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 160-163    
  无机非金属及其复合材料 |
纳米硅溶胶的制备及在水泥基材料中的应用研究进展
解志益, 周涵, 李庆超, 李东旭
南京工业大学材料科学与工程学院, 南京 210009
Preparation, Application of Colloidal Nano-silica and Its Research Progress in Cement-based Materials
XIE Zhiyi, ZHOU Han, LI Qingchao, LI Dongxu
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
下载:  全 文 ( PDF ) ( 2263KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米技术的蓬勃发展催生了各种各样的纳米材料,其中纳米硅溶胶由于制备技术成熟、对水泥基材料性能提升明显而广受关注。纳米硅溶胶不仅可以加快水泥水化速率,还能改善水泥石力学性能及孔结构,因此逐渐成为近年来的研究热点,尤其是在掺入大量低活性辅助胶凝材料(如粉煤灰、矿渣和玻璃粉)的水泥基材料领域。本文介绍了纳米硅溶胶的两种主要制备方法,并概述了近十年来纳米硅溶胶在水泥基材料中的应用情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解志益
周涵
李庆超
李东旭
关键词:  纳米硅溶胶  水泥  混凝土  粉煤灰  辅助胶凝材料    
Abstract: A various of nanomaterials were born with the development of nanotechnology, among which the colloidal nano-silica attracted more attention for its mature synthesis methods and obvious property enhancement to cement-based materials. The colloidal nano-silica (CNS) has recently become a research hotpot, especially in thearea which cement-based materials with incorporation of enormous low activity supplementary cementing materials (SCMs, such as fly ash, slag and glass powder). The reason is that it accelerates not only hydration rate of cement, but also improves mechanical property and pore structure of hardened cement stone. Two main synthesis methods of colloidal nano-silica are introduced in the paper, and its applications in cement-based materials at the past decade are also summarized.
Key words:  colloidal nano-silica    cement    concrete    fly ash    supplementary cementing materials
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ177.62  
基金资助: 国家自然科学基金(51872137);江苏省研究生科研实践创新计划(KYLX16_0588)
通讯作者:  dongxuli@njtech.edu.cn   
作者简介:  解志益,2016年6月毕业于盐城工学院,获得工学学士学位。现为南京工业大学材料科学与工程学院硕士研究生,在李东旭教授的指导下进行研究。目前主要从事硅质材料在水泥基材料中的应用研究。李东旭, 南京工业大学材料科学与工程学院教授、博士研究生导师。1982年、1985年分别获浙江大学学士学位、硕士学位。1998年获南京化工大学博士学位。2000年浙江大学博士后出站。主要从事新型碱胶凝材料、环境协调性胶凝材料和生物材料的物理化学原理和固态工业废渣的综合利用等方研究。承担国家“973”项目,担任第3课题“性能调节型辅助性胶凝组分的研究”的课题负责人。节能型钢渣水泥获化工部科技进步三等奖,获江苏省优秀论文奖和研究生社会实践优秀指导教师的称号,近五年在国内外重要刊物上发表学术论文30多篇,被SCI收录论文9篇。
引用本文:    
解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
XIE Zhiyi, ZHOU Han, LI Qingchao, LI Dongxu. Preparation, Application of Colloidal Nano-silica and Its Research Progress in Cement-based Materials. Materials Reports, 2020, 34(Z2): 160-163.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/160
1 郭肖青, 朱平. 染整技术,2005, 27(8), 10.
2 Björnström J, Martinelli A, Matic A, et al.Chemical Physics Letters, 2004, 392(1-3), 242.
3 孙敏, 李俊华, 王佳. 化学工程师, 2012(7), 48.
4 Jal P K, Sudarshan M, Saha A, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240(1-3), 173.
5 Adam F, Chew T S, Andas J.Journal of Sol-Gel Science and Technology, 2011, 59(3), 580.
6 Chen S L, Dong P, Yang G H, et al. Industrial & Engineering Chemistry Research, 1996, 35(12), 4487.
7 Buckley A M, Greenblatt M.Journal of Chemical Education, 1994, 71(7), 599.
8 Nakashima H. Archives of Toxicology, 1994, 69(1), 59.
9 Jafari V, Allahverdi A, Vafaei M.Advanced Powder Technology, 2014, 25(5), 1571.
10 程劲松. 化学推进剂与高分子材料, 2015(5), 81.
11 Gu Y, Ran Q, Shu X, et al. Construction and Building Materials, 2016, 114(C), 673.
12 Zhang X, Yang H, Yang Q, et al. Advances in Mechanical Engineering, 2019, 11(2), 168781401982894.
13 Kong D, Corr D J, Hou P, et al. Cement and Concrete Composites, 2015, 63(C), 30.
14 Madani H, Bagheri A, Parhizkar T.Cement and Concrete Research, 2012, 42(12), 1563.
15 Kontoleontos F, Tsakiridis P E, Marinos A, et al.Construction and Buil-ding Materials, 2012, 35(C), 347.
16 Korpa A, Kowald T, Trettin R.Cement and Concrete Research, 2008, 38(7), 955.
17 Du H J, Pang S D.Key Engineering Materials, 2014, (629-630), 443.
18 Sánchez M S, Alonso M C, González R.Construction and Building Materials, 2014, 66(C), 306.
19 Hou P K, Kawashima S, Wang K J, et al.Cement and Concrete Compo-sites, 2013, 35(1), 12.
20 Ibrahim R K, Hamid R, Taha M R.Construction and Building Materials, 2012, 36(C), 779.
21 Aly M, Hashmi M S J, Olabi A G, et al.Journal of Materials & Design, 2012, 33(C), 127.
22 张县云, 宋学锋, 高瑞. 硅酸盐通报,2014(3),589.
23 陈元朋, 方诚, 孔德玉. 甘肃水利水电技术, 2014(6), 22.
24 Said A M, Zeidan M S, Bassuoni M T, et al.Construction and Building Materials, 2012, 36(C), 838.
25 Said A M, Zeidan M S.ACI Special Publication, 2009,267, 75.
26 Mahapatra C K, Barai S V.Construction and Building Materials, 2019, 198, 120.
27 Mahapatra C K, Barai S V.Construction and Building Materials, 2018, 160, 828.
28 Durgun M Y, Atahan H N.Construction and Building Materials, 2018, 158, 295.
29 Rao S, Silva P, de Brito J.Construction and Building Materials, 2015, 96(C), 508.
30 Chithra S, Kumar S R R S, Chinnaraju K.Construction and Building Materials, 2016, 113(C), 794.
31 Mukharjee B B, Barai S V.Advances in Concrete Construction, 2015, 3(3), 187.
[1] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[2] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[5] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[6] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[7] 郝哲昕, 钱春香, 周横一, 李进, 吴亚东, 张昆. 清水混凝土外观质量信息采集与分析方法及其工程应用[J]. 材料导报, 2020, 34(Z2): 233-241.
[8] 宋普涛, 王晶, 关青锋, 周永祥, 黄靖, 冷发光. 混凝土用珊瑚砂氯离子溶出规律研究[J]. 材料导报, 2020, 34(Z2): 250-254.
[9] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[10] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[11] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[12] 卢京宇, 王林, 雍涵, 王佩勋, 李超. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 618-622.
[13] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[14] 李义强, 李智, 赵斌, 刘磊, 蓝群力, 张新天, 卞立波. 多孔质混凝土植被恢复组合结构与材料性能研究[J]. 材料导报, 2020, 34(Z1): 199-202.
[15] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed