Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 6-10    https://doi.org/10.11896/j.issn.1005-023X.2017.08.002
  材料研究 |
烷基链长对四苯基乙烯衍生物聚集行为和光学性质的影响*
赵秋丽, 王金磊, 杨庆浩, 陈进, 后振中
西安科技大学材料科学与工程学院, 西安 710054
Effect of Alkyl Chain Length on Aggregation Behaviors and Optical Properties of Tetraphenylethene Derivatives
ZHAO Qiuli, WANG Jinlei, YANG Qinghao, CHEN Jin, HOU Zhenzhong
College of Materials Science and Engnieering, Xi’an University of Science and Technology, Xi’an 710054
下载:  全 文 ( PDF ) ( 1788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了带有不同烷基链长的四苯基乙烯衍生物1,1,2,2-四(4-正己氧基苯基)乙烯(THPE)和1,1,2,2-四(4-正癸氧基苯基)乙烯(TDPE),并采用紫外吸收光谱、荧光光谱研究THPE和TDPE在四氢呋喃(THF)/H2O混合溶剂中的光物理性质,通过扫描电镜观察THPE和TDPE在THF/H2O中形成的聚集体的形态结构。结果表明,THPE和TDPE在THF/H2O中的紫外吸收光谱都出现拖尾现象,然而开始出现拖尾时溶剂中的水含量不同,THPE和TDPE分别在水含量为50%和40%的THF/H2O中开始出现拖尾现象;THPE和TDPE都具有聚集诱导发光(AIE)性能,它们的荧光量子产率随着水含量的增加而增大,但是荧光量子产率快速增长的起始点不同,THPE和TDPE的荧光量子产率分别在水含量达到40%和30%后开始快速增长;THPE和TDPE在THF/H2O中都能形成形状规则的聚集体,不同的是THPE在水含量为70%时才形成有序的纳米棒,而TDPE则在水含量为50%时即能形成纳米棒和微米片。这表明,带有长烷基链的TDPE更容易聚集,通过调节烷基链长度,有望制备出发光效率高、聚集体结构可控的AIE材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵秋丽
王金磊
杨庆浩
陈进
后振中
关键词:  四苯基乙烯  烷基链  聚集诱导发光    
Abstract: Two tetraphenylethene derivatives, i.e. 1,1,2,2-tetra(4-(hexyloxy)phenyl)ethene (THPE) and 1,1,2,2-tetrakis(4-(decyloxy) phenyl)ethene (TDPE) containing alkyl chains with different lengths were prepared. The optical properties of THPE and TDPE in THF/water mixtures with different water contents were investigated by UV-Vis and fluorescence spectroscopy. The structures of the aggregates of THPE and TDPE formed in THF/water mixtures were observed by SEM. Level-off tails in the UV-Vis spectra of THPE and TDPE in THF/water mixtures can be seen as water contents reach the critical points. However, the critical points for the two derivatives differ, as level-off tails were seen in the UV-Vis spectra of THPE and TDPE when water contents reached 50% and 40%, respectively. THPE and TDPE both are AIE active and their fluorescence quantum yields increase with the increasing of water contents. However, the initial points of the rapid growth of their fluorescence quantum yields are different. The fluorescence quantum yields of THPE and TDPE began to quickly increase when their water contents reached 40% and 30%, respectively. THPE and TDPE both can self-assemble into ordered aggregates. THPE can self-assemble into ordered nanorods under 70% water content, and TDPE can self-assemble into ordered nanorods and microplates under only 50% water content. These data indicate that TDPE with longer alkyl chains can aggregate more easily. New AIE materials with high fluorescence quantum yields and structure-controlled aggregates can be expected to be prepared by tuning the lengths of alkyl chains.
Key words:  tetraphenylethene    alkyl chain    aggregation-induced emission
               出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  O621.2  
基金资助: 国家杰出青年科学基金(2120472);陕西省自然科学基础研究计划(2016JQ5078)
作者简介:  赵秋丽:女,1982年生,博士,主要研究方向为聚集诱导发光材料的制备、性能及应用 E-mail:zhao33521627@126.com
引用本文:    
赵秋丽, 王金磊, 杨庆浩, 陈进, 后振中. 烷基链长对四苯基乙烯衍生物聚集行为和光学性质的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 6-10.
ZHAO Qiuli, WANG Jinlei, YANG Qinghao, CHEN Jin, HOU Zhenzhong. Effect of Alkyl Chain Length on Aggregation Behaviors and Optical Properties of Tetraphenylethene Derivatives. Materials Reports, 2017, 31(8): 6-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.002  或          http://www.mater-rep.com/CN/Y2017/V31/I8/6
1 Mei J, Leung N L C, Kwok R T K, et al. Aggregation-induced emission: Together we shine, united we soar[J]. Chem Rev,2015,115(21):11718.
2 Mei J, Hong Y N, Lam J W Y, et al. Aggregation-induced emission: The whole is more brilliant than the parts[J]. Adv Mater,2014,26(31):5429.
3 Wang Z K, Nie J Y, Qin W, et al. Gelation process visualized by aggregation-induced emission fluorogens[J]. Nat Commun,2016,7:12033.
4 Wang Y J, Shi Y, Wang Z Y, et al. A red to near-IR fluorogen: Aggregation-induced emission, large stokes shift, high solid efficiency and application[J]. Chem Eur J,2016,22(28):9784.
5 Du B, Ding Z J, Guo L, et al. Research progress of tetraphenylethene-based compounds in the field of fluorescence sensing[J]. Mater Rev: Rev,2015,29(12):134 (in Chinese).
杜斌,丁志军,郭磊,等. 四苯基乙烯类化合物在荧光传感领域的研究进展[J]. 材料导报:综述篇,2015,29(12):134.
6 Luo J D, Xie Z L, Lam J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem Commun,2001,18:1740.
7 Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission: Phenomenon, mechanism and applications[J]. Chem Commun,2009,29:4332.
8 Hong Y N, Lam J W Y, Tang B Z. Aggregation-induced emission[J]. Chem Soc Rev,2011,40(11):5361.
9 Zhang S, Qin A J, Sun J Z, et al. Mechanism study of aggregation-induced emission[J]. Prog Chem,2011,23(4):623(in Chinese).
张双,秦安军,孙景志,等.聚集诱导发光机理研究[J]. 化学进展,2011,23(4):623.
10 Balakrishnan K, Datar A, Naddo T, et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules: Morphology control[J]. J Am Chem Soc,2006,128(22):7390.
11 Li Y H, Zhang G X, Zhang W, et al. Arylacetylene-substituted naphthalene diimides with dual functions: Optical waveguides and n-type semiconductors [J]. Chem Asian J,2014,9(11):3207.
12 Xue S F, Qiu X, Sun Q K, et al. Alky length effects on solid-state fluorescence and mechanochromic behavior of small organic luminophores[J]. J Mater Chem C,2016,4(8):1568.
13 Dong Y Q, Lam J W Y, Tang B Z. Mechanochromic luminescence of aggregation-induced emission luminogens[J]. J Phys Chem Lett,2015,6(17):3429.
14 Wang Y L, Liu T L, Bu L Y, et al. Aqueous nanoaggregation-enhanced one- and two-photon fluorescence, crystalline J-aggregation-induced red shift, and amplified spontaneous emission of 9,10-bis(p-dimethylaminostyryl)anthracene[J]. J Phys Chem C,2012,116(29):15576.
15 Li F, Gao N, Xu H, et al. Relationship between molecular stacking and optical properties of 9,10-bis((4-N,N- dialkylamino)styryl) anthracene crystals: The cooperation of excitonic and dipolar coupling[J]. Chem Eur J,2014,20(32):9991.16 Wang Y L, Liu W, Bu L Y, et al. Reversible piezochromic luminescence of 9,10-bis[(N-alkylcarbazol-3-yl)vinyl]anthracenes and the dependence on N-alkyl chain length[J]. J Mater Chem C,2013,1(4):856.
17 Zheng M, Sun M X, Li Y P, et al. Piezofluorochromic properties of AIE-active 9,10-bis(N-alkylphenothiazin-3-yl-vinyl-2)-anthracenes with different length of alkyl chains[J]. Dyes Pigments,2014,102:29.
18 Sun Q K, Liu W, Ying S A, et al. 9,10-Bis(N-alkylindole-3-yl-vinyl-2)anthracenes as a new series of alkyl length-dependent piezofluo-rochromic aggregation-induced emission homologues[J]. RSC Adv,2015,5(89):73046.
19 Dong Y Q, Lam J W Y, Qin A J, et al. Aggregation-induced emission of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes[J]. Appl Phys Lett,2007,91(1):011111.
20 Luo X L, Zhao W J, Shi J Q, et al. Reversible switching emissions of tetraphenylethene derivatives among multiple colors with solvent vapor, mechanical, and thermal stimuli[J]. J Phys Chem C,2012,116(41):21967.
21 Freek J M Hoeben, Jonkheijm P, Meijer E W, et al. About supramolecular assemblies of π-conjugated systems[J]. Chem Rev,2005,105(4):1491.
22 Zang L, Che Y, Moore J S. One-dimensional self-assembly of planar π-conjugated molecules: Adaptable building blocks for organic nanodevices[J]. Accounts Chem Res,2008,41(12):1596.
23 Zhao Q L, Zhang S, Liu Y, et al. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures[J]. J Mater Chem,2012,22(15):7387.
[1] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed