Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 288-292    https://doi.org/10.11896/cldb.201902016
  金属与金属基复合材料 |
不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性
苏新1, 王振生1, 彭真1, 郭建亭2
1 湖南科技大学先进矿山装备教育部工程研究中心,湘潭 411201
2 中国科学院金属研究所,沈阳 110016
Friction and Wear Characteristics of NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re Alloy in Different Ambient Atmospheres
SU Xin1, WANG Zhensheng1, PENG Zhen1, GUO Jianting2
1 Engineering Research Center of Advanced Mining Equipment, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
下载:  全 文 ( PDF ) ( 2517KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了空气、真空以及氮气环境中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的磨损特性。采用XRD、SEM、EDS分析了合金的相组成与磨损机制。结果表明:真空与氮气中,合金磨损表面没有形成氮化物以及化学吸附层,合金与对磨件直接接触磨损;空气的氧化作用导致部分合金磨损表面生成了氧化膜,产生一定程度的氧化磨损。不同环境气氛中,合金的磨损率主要受控于磨损表面接触状态和磨损机制;当载荷为3~5 N时,磨损表面呈弹性接触状态,磨损率主要受控于粘着磨损机制;当载荷为10~20 N时磨损表面呈塑性接触状态,磨损率主要受控于磨粒磨损机制。真空与氮气中,合金的摩擦系数主要受控于摩擦力的剪切作用;空气中,磨损表面的氧化膜对摩擦系数产生重要影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏新
王振生
彭真
郭建亭
关键词:  NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re  环境气氛  磨损机制  磨损率  摩擦系数    
Abstract: The wear characteristics of NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re alloy in different ambient atmospheres were studied. The phase composition and wear mechanism of the alloy were analyzed by XRD, SEM and EDS. The results showed that the wear surface of the alloy does not form nitride and its chemical adsorption layer in the vacuum and nitrogen, the alloy is in direct against Si3N4, The oxidation of the air causes the surface of the alloy with oxide film. In different ambient atmosphere, the wear rate of the alloy are mainly controlled by the contact state and wear mechanism, the friction surface is in elastic contact state at 3~5 N, and the wear rate is mainly influenced by the adhesive wear mechanism. 10~20 N, the friction surface is in plastic contact state,and its wear rates are mainly controlled by the abrasive wear. In the vacuum and nitrogen, the friction coefficients are mainly controlled by the shear force of the friction. In the air environment,the oxide film on the wear surface have a great influence on friction coefficients.
Key words:  NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re    ambient atmosphere    wear mechanism    wear rate    friction coefficient
                    发布日期:  2019-01-31
ZTFLH:  TH117  
  TG146  
基金资助: 国家自然科学基金(51101055);湖南省自然科学基金(13JJ8015);湖南省研究生科研创新基金(CX2016B553)
作者简介:  苏新,湖南科技大学硕士研究生。2011年9月至2018年6月,在湖南科技大学获得材料成型及控制工程专业工学学士学位和材料科学与工程专业工学硕士学位。以第一作者在国内外学术期刊上发表论文1篇,申请国家发明专利2项。在校期间主持湖南省研究生创新基金项目并获得湖南省创新论坛优秀论文三等奖。研究工作主要为NiAl基合金的摩擦磨损性能;NiAl基合金的自润滑机理;铱铑合金的焊接等。王振生,湖南科技大学副教授,硕士研究生导师。2009年研究生毕业于中国科学院金属研究所。zhsh_w@sina.com
引用本文:    
苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
SU Xin, WANG Zhensheng, PENG Zhen, GUO Jianting. Friction and Wear Characteristics of NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re Alloy in Different Ambient Atmospheres. Materials Reports, 2019, 33(2): 288-292.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902016  或          http://www.mater-rep.com/CN/Y2019/V33/I2/288
1 Yuan W Z, Qiu M, Zhang Y Z,et al. Lubrication Engineering,2010,35(2),48(in Chinese).
袁文征,邱明,张永振,等.润滑与密封,2010,35(2),48.
2 Yuan W Z, Qiu M, Zhang Y Z,et al. Lubrication Engineering, 2009,34(7),107(in Chinese).
袁文征,邱明,张永振,等.润滑与密封,2009,34(7),107.
3 Truhan J J, Qu J, Blau P J. Tribology International, 2005,38(3),211.
4 Guo J T. Ordered Intermetallic Compound NiAl Alloy, Science Press,China,2003(in Chinese).
郭建亭.有序金属间化合物镍铝合金,科学出版社,2003.
5 Guo J T. Superalloy Materials Science (Volume 1), Science Press, China,2010(in Chinese).
郭建亭.高温合金材料学(上册),科学出版社,2010.
6 Noebe R D, Bowman R R, Nathal M V. Metallurgical Reviews,1993,38(4),193.
7 Miracle D B. Acta Metallurgica Et Materialia,1993,41(3),649.
8 Mishra S C, Satapathy A, Chaithany A M, et al. Journal of Reinforced Plastics & Composites,2009,28(23),2931.
9 Wang Z S, Guo J T, Zhou L Z,et al. Chinese Journal of Material Research,2009,23(3),225(in Chinese).
王振生,郭建亭,周兰章,等.材料研究学报,2009,23(3),225.
10 Palm M, Preuhs J, Sauthoff G. Journal of Materials Processing Techno-logy,2003,136(1-3),105.
11 Wang Z S, Zhang M E, Yang S S,et al. Rare Metal Materials and Engineering,2015,44(8),1909(in Chinese).
王振生,张孟恩,杨双双,等.稀有金属材料与工程,2015,44(8),1909.
12 Katsubiro N, Shingo S, Taku K, et al. Powder Metall,1993,40(1),49.
13 Senda T, Yamamoto Y, Ochi Y. Journal of the Ceramic Society of Japan,2010,101(1172),461.
14 Wang Z S, Zhang M E, Yang S S, et al. Acta Metallurgica Sinica,2013,49(11),1325(in Chinese).
王振生,张孟恩,杨双双,等.金属学报,2013,49(11),1325.
15 Li S Z, Jiang X X. Material Science Progress,1990,4(1),1(in Chinese).
李诗卓,姜晓霞.材料科学进展,1990,4(1),1.
16 Jiang X X, Li S Z, Peteson M B, et al. Materials Science Progress,1989,3(6),487(in Chinese).
姜晓霞,李诗卓,Peteson M B,等.材料科学进展,1989,3(6),487.
17 Yang S L, Chen Y, Xue X H, et al. Shanghai Metals,2005,45(27),45(in Chinese).
杨尚磊,陈艳,薛小怀,等.上海金属,2005,45(27),45.
18 Bowden F P, Tabor D. The Friction and Lubrication of Solids. China Machine Press,China,1982.
19 Wen S Z, Huang P. Tribology Principles (3rd Edition), Tsinghua University Press, China,2008(in Chinese).
温诗涛,黄平.摩擦学原理(第3版),清华大学出版社,2008.
20 Wang G M, Zhang Y Z, Du S M,et al. Tribology,2007,27(4),346(in Chinese).
王观民,张永振,杜三明,等.摩擦学学报,2007,27(4),346.
21 Duan H T, Du S M, Zhang Y Z. Tribology,2007,32(11),28(in Chinese).
[1] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[2] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[3] 李锐, 任德均, 陈翔, 王晓杰. 各向同性磁流变橡胶材料的摩擦实验研究*[J]. 《材料导报》期刊社, 2017, 31(2): 64-68.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed