Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23090044-7    https://doi.org/10.11896/cldb.23090044
  无机非金属及其复合材料 |
考虑干密度影响的EICP矿化粉砂土渗透特性试验研究
石磊1,2, 房佳明1, 张建伟1,2, 张欢1, 边汉亮1,2, 徐向春1,2,*
1 河南大学建筑工程学院,河南 开封 475004
2 开封市特殊土改性与修复工程技术研究中心,河南 开封 475004
Experimental Study on Infiltration Characteristics of EICP Mineralized Silt Sand Soil Considering the Effect of Dry Density
SHI Lei1,2, FANG Jiaming1, ZHANG Jianwei1,2, ZHANG Huan1, BIAN Hanliang1,2, XU Xiangchun1,2,*
1 School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, Henan, China
2 Kaifeng Technology Research Center of Engineering on Soil Modification and Restoration, Kaifeng 475004, Henan, China
下载:  全 文 ( PDF ) ( 20119KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 脲酶诱导碳酸钙沉淀技术(EICP)在黄泛区粉砂土的降渗领域具有良好的应用前景。本工作采用预混法处理粉砂土试样,通过变水头试验对处理后粉砂土试样的渗透系数进行测定,并通过扫描电镜对EICP降渗的微观特征进行探究。得到了在不同干密度及处理次数下处理前后粉砂土的渗透系数、碳酸钙生成量及孔隙变化情况。研究结果表明,随着干密度的增加,处理后试样的渗透系数先减小后增大,碳酸钙生成量先增大后减小。随着EICP技术处理次数的增加,渗透系数逐渐下降,碳酸钙生成量逐渐增加,并且在第1次处理后的渗透系数和碳酸钙生成量的变化幅度最大。在6次处理完成后粉砂土的渗透系数最低降至1.64×10-4 cm·s-1,碳酸钙生成量最高为5.82%。从微观分析中得出处理后的试样的孔隙率和孔隙面积均减小,孔隙率平均下降7.28%,其中干密度为1.55 g·cm-3的试样孔隙特性变化最大,孔隙率下降8.87%,孔隙面积下降8.64%,大孔隙面积下降48.59%,解释了宏观渗透系数的变化原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石磊
房佳明
张建伟
张欢
边汉亮
徐向春
关键词:  干密度  脲酶诱导碳酸钙沉淀技术(EICP)  粉砂土  渗透系数  微观结构    
Abstract: Enzyme induced calcium carbonate precipitation(EICP) technology has good application prospect in reducing infiltration of silt soil in yellow river flooding areas. Here, the premixing method was used to treat the silt soil samples, and the permeability coefficient of the samples was measured by falling-head permeability test, and the microscopic characteristics of EICP seepage reduction were explored by scanning electron microscopy. The permeability coefficient, calcium carbonate production amount and pore changes of silt sand soil before and after treatment with different dry densities and EICP treatment times were obtained. From the research results, as the dry density increases, the permeability coefficient of the treated sample first decreases and then increases, and the amount of calcium carbonate produced first increases and then decreases. With the increase of EICP treatment times, the permeability coefficient gradually decreased, and the calcium carbonate production gradually increased. Whether to the permeability coefficient or to calcium carbonate production, the variation was the most significant after the first treatment. After 6 treatments, the permeability coefficient of silt sand soil can be reduced to a minimum of 1.64×10-4 cm·s-1, and the maximum calcium carbonate production amount can reach 5.82%. Through the microscopic analysis, the porosity and pore area of the treated samples both decreased, and the average porosity decreased by 7.28%, and the maximum reduction was occurred to the sample with a dry density of 1.55 g·cm-3, it's porosity decreased by 8.87%, and it's pore area decreased by 8.64%, and it's macropore area decreased by 48.59%, which caused the change of macroscopic permeability coefficient.
Key words:  dry density    enzyme iduced calcium carbonate precipitation(EICP)    silty sand    permeability coefficient    microstructure
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TU411.4  
基金资助: 河南省重点研发与推广专项资助项目(232102321141);河南省高等学校重点科研项目(24A560003);河南省自然科学基金青年资助项目(232300420435)
通讯作者:  * 徐向春,2011年6月、2014年6月、2020年12月分别于河南城建学院、华东交通大学、东南大学获得工学学士、硕士、博士学位,现为河南大学建筑工程学院硕士研究生导师。目前主要研究方向:微生物矿化技术(MICP)、土遗址修复技术、工程建设全过程减碳与碳封存技术。以第一作者发表SCI、EI共3篇,以第一发明人授权专利2项。参与国家自然科学基金重点项目1项,面上项目1项,目前主持省部级项目2项。xxc_geo@foxmail.com   
作者简介:  石磊,2013年6月、2020年6月分别于华北水利水电大学和中国地质大学(北京)获得工学学士学位和硕博学位,现为河南大学建筑工程学院硕士研究生导师。目前主要研究方向:诱导碳酸钙沉淀技术(MICP/EICP)在岩土体降渗中的应用、能源工程地质(地下油气储库工程地质)。发表论文13篇,其中SCI、EI收录9篇;以第一发明人授权发明专利5项,实用新型专利2项;国家标准《地下水封石洞油库设计标准》(GB50455-2020)主要起草人之一;目前主持省部级项目2项,横向项目1项,参与国家自然科学基金面上项目1项。
引用本文:    
石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
SHI Lei, FANG Jiaming, ZHANG Jianwei, ZHANG Huan, BIAN Hanliang, XU Xiangchun. Experimental Study on Infiltration Characteristics of EICP Mineralized Silt Sand Soil Considering the Effect of Dry Density. Materials Reports, 2024, 38(23): 23090044-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090044  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23090044
1 Jiang L. Experimental study on the dynamic change law of three-dimensional electric field characteristics during the process of earth-rock embankment pipe surge. Master's Thesis, Chongqing Jiaotong University, China, 2020 (in Chinese).
蒋丽. 土石堤坝管涌演化进程中三维电场特征动态变化规律的试验研究. 硕士学位论文, 重庆交通大学, 2020.
2 Deng C G, Gan L, Deng J Z, et al. Advances in Science and Technology of Water Resources, 2022, 42(1), 80 (in Chinese).
邓传贵, 甘磊, 邓家铮, 等. 水利水电科技进展, 2022, 42(1), 80.
3 Wang Y, Wang S R. Engineering and Technological Research, 2022, 7(9), 83 (in Chinese).
王永, 王舒锐. 工程技术研究, 2022, 7(9), 83.
4 Li X M, Lu G Y, Zhang H Y, et al. Journal of Building Materials, 2021, 24(3), 648 (in Chinese).
李新明, 路广远, 张浩扬, 等. 建筑材料学报, 2021, 24(3), 648.
5 Papadopoulou M P, Karatzas G P, Bougioukou G G, et al. Environmental Modeling & Assessment, 2007, 12(1), 43.
6 Naveen B P, Sumalatha J, Malik R K, et al. International Journal of Geo-Engineering, 2018, 9(1), 1.
7 Yang Y, Chu J, Xiao Y, et al. Construction and Building Materials, 2019, 212, 342.
8 Tang C S, Pan X H, Lyu C, et al. Geological Journal of China Universities, 2021, 27(6), 625.
9 Zhang J, Yin Y, Shi W, et al. Case Studies in Construction Materials, 2023, 18, e01802.
10 Neupane D, Yasuhara H, Kinoshita N, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12), 2021.
11 Wu L Y, Miao L C, Sun X H, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(4), 714 (in Chinese).
吴林玉, 缪林昌, 孙潇昊, 等. 岩土工程学报, 2020, 42(4), 714.
12 Dilrukshi R A N, Nakashima K, Kawasaki S, et al. Soils and Foundations, 2018, 58(4), 894.
13 Zusfahair Z, Ningsih D R, Putri D, et al. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14(1), 20.
14 Cuccurullo A, Gallipoli D, Bruno A W, et al. In: National conference of the researchers of geotechnical engineering CNRIG 2019: geotechnical research for land protection and development. Iecco, 2019, pp.753.
15 Dejong J T, Mortensen B M, Martinez B C, et al. Ecological Engineering, 2010, 36(2), 197.
16 Sun X, Miao L, Chen R, et al. Geomicrobiology Journal, 2019, 36(9), 810.
17 Stabnikov V, Naeimi M, Ivanov V, et al. Cement and Concrete Research, 2011, 41(11), 1143.
18 Cheng L, Shahin M A. In: 68th Canadian Geotechnical Conference. Quebec, 2015, pp.21.
19 Mo Y, Yue S, Zhou Q, et al. Materials, 2021, 14(18), 5140.
20 De Muynck W, Debrouwer D, De Belie N, et al. Cement and Concrete Research, 2008, 38(7), 1005.
21 Shu S, Yan B, Meng H, et al. Soils and Foundations, 2022, 62(6), 101246.
22 Rebata-Landa V, Santamarina J C. Geochemistry, Geophysics, Geosystems, 2006, 7(11), Q11006.
23 Nafisi A, Safavizadeh S, Montoya B M, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9), 06019008.
24 Cui M J, Zheng J J, Lan H J, et al. Rock and Soil Mechanics, 2016, 37(S2), 397 (in Chinese).
崔明娟, 郑俊杰, 赖汉江, 等. 岩土力学, 2016, 37(S2), 397.
25 Liang S H, Zeng W H, Chen J T, et al. Industrial Construction, 2018, 48(7), 27 (in Chinese).
梁仕华, 曾伟华, 陈俊涛, 等. 工业建筑, 2018, 48(7), 27.
26 Al Qabany A, Soga K, Santamarina C, et al. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8), 992.
27 Li C, Liu S H, Zhou T J, et al. Mechanics in Engineering, 2017, 39(2), 165 (in Chinese).
李驰, 刘世慧, 周团结, 等. 力学与实践, 2017, 39(2), 165.
28 Zhu L. Effect of particle size distribution on the EICP-Treated earthen site soil. Master's Thesis, Lanzhou University, China, 2023 (in Chinese).
朱磊. 颗粒级配对酶诱导碳酸钙沉淀加固遗址土的影响研究, 硕士学位论文, 兰州大学, 2023.
29 Kim D, Park K, Kim D, et al. Materials, 2013, 7(1), 143.
30 Zhang L, Li T L, Chen C L, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(5), 945 (in Chinese).
张林, 李同录, 陈存礼, 等. 岩土工程学报, 2022, 44(5), 945.
31 Wang X Z, Wang X, Hu M J, et al. Rock and Soil Mechanics, 2017, 38(11), 3127 (in Chinese).
王新志, 王星, 胡明鉴, 等. 岩土力学, 2017, 38(11), 3127.
32 Yuan P B, Zhu L, Zhong X M, et al. Rock and Soil Mechanics, 2022, 43(12), 3385 (in Chinese).
原鹏博, 朱磊, 钟秀梅, 等. 岩土力学, 2022, 43(12), 3385.
33 Whiffin V S. Microbial CaCO3 precipitation for the production of biocement. Ph. D. Thesis, Murdoch University, Australia, 2004.
34 Su X, Wu W, Tang H, et al. Engineering Geology, 2023, 324, 107249.
35 Zhang Y J. Journal of Hunan University (Natural Sciences), 2024, 51(3), 121(in Chinese).
张永杰. 湖南大学学报(自然科学版), 2024, 51(3), 121.
36 Zhang Q, Ye W, Liu Z, et al. Construction and Building Materials, 2023, 363, 129724.
37 Gao Y, Qian H,Li X, et al. Environmental Earth Sciences, 2018, 77, 1.
38 Yue J W, Chen Y, Kong Q M, et al. Journal of Architecture and Civil Engineering, 2022, 39(5), 202 (in Chinese).
岳建伟, 陈颖, 孔庆梅, 等. 建筑科学与工程学报, 2022, 39(5), 202.
39 Xu P P, Zhu J W, Liao L Y, et al. Engineering Geology, 2021, 282, 105875.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[7] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[8] 林海, 时花豹, 周创兵, 吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090001-6.
[9] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[10] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[11] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[12] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[13] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[14] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[15] 曹晓君, 刘美辰, 杨康, 马义明, 王俊杰, 黎军顽. 可降解铸态Zn-Cu-Sr合金的组织与性能[J]. 材料导报, 2024, 38(18): 23060210-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed