Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070200-11    https://doi.org/10.11896/cldb.23070200
  金属与金属基复合材料 |
镁合金多向锻造技术的研究现状与展望
钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建*
安徽工业大学冶金工程学院,微纳组织与力学研究所,安徽 马鞍山 243002
Research Progress of Multi-directional Forged Magnesium Alloys: a Review
ZHONG Liping, LU Tiaotiao, SUN Linchao, ZHANG Mei, WANG Liangliang, WANG Yongjian*
Institute of Microstructure and Micro/Nanomechanics, School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 90047KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 变形镁合金材料因密度低、比强度高等优点在汽车、轨道交通、航空航天等领域日益受到关注。然而,镁合金的强度低、室温塑性差、不耐腐蚀等问题极大地限制了其应用。近年来,大塑性变形技术因能够显著细化材料组织、提高材料的力学性能和耐腐蚀性能而受到广泛关注。相比其他大塑性变形技术,多向锻造技术具有工艺简单、效率高、成本低等优点,在航空航天和汽车工业领域具有很大的应用前景。本文综述了近年来镁合金多向锻造方面的相关文献,介绍了多向锻造成形镁合金的工艺过程,总结了锻造工艺参数对镁合金微观组织演化、力学性能及耐腐蚀性能的影响规律,最后展望了镁合金多向锻造技术的发展方向和需要解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟丽萍
路迢迢
孙林超
张梅
王亮亮
王永建
关键词:  镁合金  多向锻造  组织演化  力学性能  耐腐蚀性能    
Abstract: With the advantages of low density and high specific strength, wrought magnesium alloys get growing attentions in the fields of automobile, rail transit, aerospace and other fields. However, due to the low strength, poor plasticity at room temperature and unsatisfied corrosion resistance, the application of magnesium alloys is greatly limited. In recent years, severe plastic deformation (SPD) has been widely concerned because of its ability to significantly refine the grain structure, improve mechanical properties and corrosion resistance of Mg alloys. Compared with other SPD processes, multi-direction forging (MDF) has many advantages, such as simple process, high efficiency and low cost. In this paper, recent literatures on MDF of Mg alloys are reviewed, the technical principles of forming Mg alloys by MDF process were introduced, and the effects of MDF parameters on microstructure evolution, mechanical properties and corrosion resistance of Mg alloys were summarized. Moreover, the future development and problems in the preparation of Mg alloy by MDF process are prospected.
Key words:  magnesium alloys    multi-directional forging (MDF)    microstructure evolution    mechanical property    corrosion resistance
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG319  
基金资助: 安徽省自然科学基金(2108085QE185);安徽省教育厅重点项目(2022AH050316);国家自然科学基金(51901144)
通讯作者:  * 王永建,安徽工业大学冶金工程学院副教授、硕士研究生导师。目前主要从事轻合金析出相强韧化和塑性变形等方面的研究工作。以第一作者或者通信作者发表论文20余篇,包括Journal of Magnesium and Alloys、Journal of Materials Science and Technology、Journal of Alloys and Compounds、Materials Characterization、Transactions of Nonferrous Metals Society of China等,主持国家自然科学基金项目1项、省部级项目1项,参与省部级项目2项。wyjcqu@163.com   
作者简介:  钟丽萍,安徽工业大学冶金工程学院讲师、硕士研究生导师。目前主要从事镁合金导热性能、析出相强韧化和塑性变形等方面的研究工作。以第一作者或者通信作者发表论文20余篇,包括Journal of Magnesium and Alloys、Journal of Materials Science and Technology、Journal of Alloys and Compounds、Materials Characterization、Transactions of Nonferrous Metals Society of China等,主持省部级项目3项,参与国家自然科学基金项目1项。
引用本文:    
钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
ZHONG Liping, LU Tiaotiao, SUN Linchao, ZHANG Mei, WANG Liangliang, WANG Yongjian. Research Progress of Multi-directional Forged Magnesium Alloys: a Review. Materials Reports, 2024, 38(23): 23070200-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070200  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070200
1 Ding W J, Wu G H, Li Z Q, et al. Aerospace Shanghai, 2019, 36(2), 1(in Chinese).
丁文江, 吴国华, 李中权, 等. 上海航天, 2019, 36(2), 1.
2 Wang H Y, Xia L, Bu R Y, et al. Acta Metallurgica Sinca, 2021, 57(11), 1429(in Chinese).
王慧远, 夏楠, 布如宇, 等. 金属学报, 2021, 57(11), 1429.
3 Tan J, Wang F L, Jiang B, et al. Chinese Journal of Nature, 2023, 45(2), 93(in Chinese).
谭军, 王芳磊, 蒋斌, 等. 自然杂志, 2023, 45(2), 93.
4 Li F, Guan R G, Tie D, et al. Chinese Engineering Science, 2020, 22(5), 76(in Chinese).
李芳, 管仁国, 铁镝, 等. 中国工程科学, 2020, 22(5), 76.
5 Guo F. Deformation behavior of large strain rolling of Mg alloys sheets and its effect on microstructures and properties. Ph. D. Thesis, Chongqing University, China, 2017(in Chinese).
郭非. 镁合金板材大应变轧制变形行为及对组织性能的影响. 博士学位论文, 重庆大学, 2017.
6 Zhang W, Liu X, Ma J, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(9), 2877.
7 Shi L Q. Studu on supression of edge crack of magnesium alloy AZ31 room temperature rolling tith electric pulse. Master's Thesis, Yanshan University, China, 2022(in Chinese).
史立强. 电脉冲辅助镁合金AZ31室温轧制边裂抑制规律性的研究. 硕士学位论文, 燕山大学, 2022.
8 Bao J, Li Q A, Chen X Y, et al. Materials Reports, 2022, 36(10), 112(in Chinese).
鲍键, 李全安, 陈晓亚, 等. 材料导报, 2022, 36(10), 112.
9 Lyu H. Effect of extrusion process parameters on Microstructure and mechanical properties of Mg-Zn-Yb-Zr alloy. Master's Thesis, Southwest University, China, 2022(in Chinese).
吕颢. 挤压参数对Mg-Zn-Yb-Zr合金微观组织和力学性能的影响. 硕士学位论文, 西南大学, 2022.
10 Cui L, Tang C P, Li Q, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(12), 3632(in Chinese).
崔磊, 唐昌平, 李权, 等. 中国有色金属学报, 2022, 32(12), 3632.
11 Yan L P, Li Q A, Chen X Y. Transactions of Materials and Heat Treatment, 2018, 39(11), 1(in Chinese).
兖利鹏, 李全安, 陈晓亚. 材料热处理学报, 2018, 39(11), 1.
12 Zhang N. Research on microstructure and mechanical properties of ultra-fine grain Mg-Al-Ca-Mn alloy deformed by high pressure torsion. Master's Thesis, Harbin Institute of Technology, China, 2021(in Chinese).
张娜. 高压扭转变形超细晶Mg-Al-Ca-Mn合金显微组织和力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2021.
13 Dai X J, Yang X R, Jing L, et al. Rare Metals, 2020, 44(12), 1325 (in Chinese).
代晓军, 杨西荣, 荆磊, 等. 稀有金属, 2020, 44(12), 1325.
14 Zheng H P. Microstructure and mechanical behavior of Mg-14Li-3Al-2Gd alloy processed by accumulative roll bonding. Ph. D. Thesis, Harbin Engineering University, China, 2020(in Chinese).
郑海鹏. 累积叠轧Mg-14Li-3Al-2Gd合金的微观组织与力学行为研究. 博士学位论文, 哈尔滨工程大学, 2020.
15 Zhang Z, Yuan L, Zheng M, et al. Journal of Materials Processing Technology, 2023, 311, 117828.
16 Wang Y P, Hu J W, Xu X Y, et al. Materials Reports, 2019, 33(13), 2266(in Chinese).
王云鹏, 胡嘉玮, 许小云, 等. 材料导报, 2019, 33(13), 2266.
17 Salishchev G A, Valiakhmetov O R, Galeyev. Journal of Materials Science, 1993, 28(11), 2898.
18 Wu Y Z, Yan H G, Zhu S Q, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(2), 310(in Chinese).
吴远志, 严红革, 朱素琴, 等. 中国有色金属学报, 2014, 24(2), 310.
19 Zhong L W, Zhang X D. China Metal Bulletin, 2022, 1070(6), 243(in Chinese).
钟良伟, 张小东. 中国金属通报, 2022, 1070(6), 243.
20 Chen Q, Geng H, Zhang H, et al. Journal of Materials Research and Technology, 2022, 21, 2827.
21 Zhang C J, Jiang X, Lü Z D, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(4), 1159.
22 Yang Z, Liu H, Cui Z, et al. Materials & Design, 2023, 225, 111508.
23 Lan X X. Effect of multi-directional forging and subsequent heat treatment on spheroidization of lamellar structure of TC21 titanium alloy. Master's Thesis, Nanchang Hangkong University, China, 2021(in Chinese).
蓝希鑫. 多向锻造及后续热处理对TC21钛合金片层组织球化的影响. 硕士学位论文, 南昌航空大学, 2021.
24 Mikhaylovskaya A V, Kishchik M S, Kotov A D, et al. Materials Letters, 2022, 321, 132412.
25 Zhao J, Deng Y, Zhang J, et al. Materials Science and Engineering: A, 2019, 756, 119.
26 Nouri S, Kazeminezhad M, Shadkam A. Materials Chemistry and Physics, 2020, 254, 123446.
27 Wang D, Yi Y, Li C, et al. Materials Science and Engineering: A, 2021, 826, 141932.
28 Sun J, Wang X, Li J, et al. Vacuum, 2021, 187, 110116.
29 Xiong Y B, Zheng Z Z, Wen D X, et al. Forging & Stamping Technology, 2021, 46(7), 1(in Chinese).
熊逸博, 郑志镇, 温东旭, 等. 锻压技术, 2021, 46(7), 1.
30 Huang D, Wu M Y, Wen H, Forging & Stamping Technology, 2022, 47(4), 68(in Chinese).
黄东, 吴明友, 文豪. 锻压技术, 2022, 47(4), 68.
31 Jin Y B. Multi-directional forging finite element simulation and neural network prediction of microstructure evolution for GH4169 superalloy. Ph. D. Thesis, Yanshan University, China, 2022(in Chinese).
靳永波. GH4169合金多向锻造组织演变仿真及神经网络预测研究. 博士学位论文, 燕山大学, 2022.
32 Cui C, Zhang W, Chen W, et al. Journal of Magnesium and Alloys, 2022, 10(10), 2745.
33 Zhang Y, Shao J B, Chen T, et al. Acta Metallurgica Sinca, 2020, 56(5), 723(in Chinese).
张阳, 邵建波, 陈韬, 等. 金属学报, 2020, 56(5), 723.
34 Ding N, Wang Y F, Liu K, et al. Acta Metallurgica Sinca, 2021, 57(8), 1000(in Chinese).
丁宁, 王云峰, 刘轲, 等. 金属学报, 2021, 57(8), 1000.
35 Jiang M G, Yan H, Chen R S. Materials & Design, 2015, 87, 891.
36 Zhang Z, Yuan L, Shan D, et al. Materials Science and Engineering: A, 2021, 827, 142036.
37 Guo Q, Yan H G, Chen Z H, et al. Materials Characterization, 2007, 58(2), 162.
38 Zhang J, Xie H, Lu Z, et al. Results in Physics, 2018, 10, 967.
39 Liu B, Zhang Z, Jin L, et al. Materials Science and Engineering: A, 2016, 650, 233.
40 Cui C, He J, Wang W, et al. Journal of Alloys and Compounds, 2022, 909, 164795.
41 Dong B, Zhang Z, Yu J, et al. Journal of Alloys and Compounds, 2020, 823, 153776.
42 Nie K B, Wang X J, Deng K K, et al. Journal of Alloys and Compounds, 2014, 617, 979.
43 Tong L B, Chu J H, Sun W T, et al. Materials Characterization, 2021, 171, 110804.
44 Ding N, Du W, Zhu X, et al. Materials Science and Engineering: A, 2023, 864, 144590.
45 Li H, Shao C, Rojas D F, et al. Journal of Alloys and Compounds, 2022, 890, 161703.
46 Pei Y, Yuan M, Wei E, et al. Journal of Materials Research and Technology, 2023, 25, 5038.
47 Singh C, Gokhale A, Varma A, et al. Materials Science and Enginee-ring: A, 2022, 851, 143613.
48 Wang G, Mao P, Wang Z, et al. Journal of Materials Research and Technology, 2022, 21, 40.
49 Wu H, Jiang J, Yang Z, et al. Journal of Magnesium and Alloys, DOI:10.1016/j.jma.2022.03.003.
50 Wu H, Jiang J, Yang Z, et al. Journal of Materials Research and Technology, 2023, 23, 4790.
51 Xing X W, Huang C, Liu Y, et al. Journal of Plasticity Engineering, 2023, 30(5), 66.
邢秀伟, 黄晨, 刘阳, 等. 塑性工程学报, 2023, 30(5), 66.
52 Miura H, Kobayashi M, Benjanarasuth T. Materilas Transactions, 2016, 57(9), 1418.
53 Wu Y Z. Research on the technics and mechanisms of ZK series magnesium alloys during high strain rate forging. Ph, D. Thesis, Hunan University, China, 2012(in Chinese).
吴远志. ZK系列镁合金高应变速率锻造工艺及机理的研究. 博士学位论文, 湖南大学, 2012.
54 Shah S S A, Jiang M G, Wu D, et al. Acta Metallurgica Sinica (English Letters), 2018, 31(9), 923.
55 Shah S S A, Wu D, Wang W H, et al. Materials Science and Enginee-ring: A, 2017, 702, 153.
56 Wang J, Liu C, Jiang S, et al. Journal of Magnesium and Alloys, 2021, DOI:10.1016/j.jma.2021.08.037.
57 Wang R. Study on microstructure and mechanical properties of high-strength magnesium alloy during high strain-rate multi-directional forging. Master's Thesis, Shenyang Aerospace University, China, 2017(in Chinese).
王锐. 高强镁合金高速多向锻造过程中的微观组织和力学性能研究. 硕士学位论文, 沈阳航空航天大学, 2017.
58 Zhou X, Yao Y, Zhang J, et al. Journal of Materials Science & Technology, 2021, 70, 156.
59 Wu Y Z, Yan H G, Zhu S Q, et al. Chinese Journal of Materials Research, 2014, 28(2), 144(in Chinese).
吴远志, 严红革, 朱素琴, 等. 材料研究学报, 2014, 28(2), 144.
60 Bahmani A, Arthanari S, Shin K S. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-4), 785.
61 Dong B, Zhang Z, Che X, et al. Metals, 2020, 10(1), 1.
62 Huang C, Liu C M, Wang B Z. Materials Science Forum, 2016, 849, 148.
63 Jiang M G, Yan H, Chen R S. Materials Science and Engineering: A, 2015, 621, 204.
64 Li B, Teng B G, Luo D G. Acta Metallurgica Sinica (English Letters), 2018, 31(10), 1009.
65 Salandari-Rabori A, Zarei-Hanzaki A, Fatemi S M, et al. Journal of Alloys and Compounds, 2017, 693, 406.
66 Tang L, Liu C, Chen Z, et al. Materials & Design, 2013, 50, 587.
67 Wang B, Liu C, Gao Y, et al. Materials Science and Engineering: A, 2017, 702, 22.
68 Wei J, Jiang S, Chen Z, et al. Materials Science and Engineering: A, 2020, 780, 139192.
69 Xia X, Chen Q, Zhao Z, et al. Journal of Alloys and Compounds, 2015, 623, 62.
70 Zhou X, Zhang J, Chen X, et al. Journal of Alloys and Compounds, 2019, 787, 551.
71 Huang C, Liu C, Jiang S, et al. Materials Science and Engineering: A, 2021, 807, 140853.
72 Wei Q, Yuan L, Ma X, et al. Materials Science and Engineering: A, 2022, 831, 142144.
73 Miura H, Nakamura W, Kobayashi M. Procedia Engineering, 2014, 81, 534.
74 Shan Z, Yang J, Fan J, et al. Journal of Magnesium and Alloys, 2021, 9(2), 548.
75 Lee D H, Lee G M, Park S H. Journal of Magnesium and Alloys, 2023, 11(5), 1683.
76 Dobkowska A, Zielińska A, Paulin I, et al. Journal of Alloys and Compounds, 2023, 952, 169843.
77 Li M, Huang Y, Liu Y, et al. Materials Science and Engineering: A, 2022, 832, 142479.
78 Su N, Wu Y, Deng Q, et al. Materials Science and Engineering: A, 2021, 810, 141019.
79 Tang C, Cui L, Jiang H, et al. Journal of Materials Research and Technology, 2023, 23, 4663.
80 Wu G, Li Z, Yu J, et al. Journal of Alloys and Compounds, 2023, 938, 168666.
81 Tang J, Chen L, Zhao G, et al. Materials Science and Engineering: A, 2020, 773, 138718.
82 Zhang T, Cui H, Cui X, et al. Journal of Materials Research and Technology, 2020, 9(1), 133.
83 Sun Y, Zhang B, Yang C, et al. Materials Science and Engineering: A, 2022, 853, 143779.
84 Wang C, Xin R, Li D, et al. Materials Science and Engineering: A, 2017, 680, 152.
85 Wang D, Jing Y, Lin B, et al. Materials Characterization, 2022, 194, 112444.
86 Zheng L, Nie H, Liang W, et al. Journal of Magnesium and Alloys, 2016, 4(2), 115.
87 Chen H, Han Y, Liu C, et al. Journal of Alloys and Compounds, 2023, 960, 170680.
88 Lin X, Chen Z, Shao J, et al. Journal of Magnesium and Alloys, 2023, 11(7), 2340
89 Liu K, Hu D, Lou F, et al. Journal of Magnesium and Alloys, DOI:10.1016/j.jma.2022.10.009.
90 Shao J, Chen Z, Chen T, et al. Materials Science and Engineering: A, 2018, 731, 479.
91 Wang K, Wang X, Dang C, et al. Journal of Materials Research and Technology, 2023, 24, 2907.
92 Fan W X, Bai Y, Li G Y, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(4), 1119.
93 Nakata T, Xu C, Abe R, et al. Materials Characterization, 2023, 203, 113101.
94 Yu H, Hongge Y, Jihua C, et al. Journal of Alloys and Compounds, 2014, 586, 757.
95 Zhou M, Huang X, Morisada Y, et al. Materials Science and Enginee-ring: A, 2020, 769, 138474.
96 Dong B, Che X, Zhang Z, et al. Journal of Alloys and Compounds, 2021, 853, 157066.
97 Miura H, Yu G, Yang X, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(7), 1294.
98 Wu W H. Make use of multiple forgeing to control the microstructure and mechanical properties of ZK60 alloy. Master's Thesis, Chongqing University, China, 2014 (in Chinese)
吴文昊. 利用多向锻造加工调控ZK60镁合金组织和力学性能研究. 硕士学位论文, 重庆大学, 2014.
99 Ramesh S, Anne G, Nayaka H S, et al. Journal of Materials Engineering and Performance, 2019, 28(4), 2053.
100 Bahmani A, Shin K S. Corrosion, 2020, 76(8), 750.
101 Cao F F, Deng K K, Nie K B, et al. Journal of Alloys and Compounds, 2019, 770, 1208.
102 Bahmani A, Arthanari S, Shin K S. Journal of Alloys and Compounds, 2021, 856, 158077.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed