Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23050184-11    https://doi.org/10.11896/cldb.23050184
  无机非金属及其复合材料 |
完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理
王家滨1,*, 张凯峰2, 郑康华1, 符梦涛1
1 西安工业大学建筑工程学院,西安 710021
2 中建西部建设北方有限公司,西安 710065
Durability Degradation Laws and Mechanism of Recycled Aggregate Concrete Subjected to Mg2+-SO42--Cl- by Full Immersion
WANG Jiabin1,*, ZHANG Kaifeng2, ZHENG Kanghua1, FU Mengtao1
1 College of Civil & Architecture Engineering, Xi’an Technological University, Xi’an 710021, China
2 China West Construction North Co., Ltd., Xi’an 710065, China
下载:  全 文 ( PDF ) ( 28543KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国西北地区的土壤与地下水中含有高浓度Mg2+、SO42-、Cl-,这些离子导致长期掩埋于地下的再生混凝土(RAC)结构耐久性严重退化。为了揭示Mg2+-SO42--Cl-侵蚀RAC耐久性损伤规律与机理,采用长期浸泡的方式,系统开展复掺辅助胶凝材料RAC耐久性试验,研究复掺辅助胶凝材料方式与取代率对RAC耐久性退化规律的影响。采用X射线衍射、红外光谱及热重等分析手段,表征RAC侵蚀产物物相组成与相对含量,揭示复合盐侵蚀RAC耐久性损伤机理。结果表明,10%粉煤灰(质量分数)+20%(质量分数)矿渣复掺RAC耐久性较高,硅灰或偏高岭土取代率高于10%时RAC的耐久性较差。侵蚀离子与RAC水化产物产生化学反应并形成晶粒极大的侵蚀产物,加速C-S-H分解向M-S-H转变;高浓度离子间相互作用形成物理盐结晶,促进裂缝的萌生扩展。化学/物理双重作用破坏RAC微观结构,加速离子扩散传输,形成化学侵蚀-结构损伤-离子传输过程。RAC界面过渡区及砂浆中遍布裂缝与孔隙,再生混凝土物理力学性能急速退化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
张凯峰
郑康华
符梦涛
关键词:  耐久性  再生混凝土  Mg2+-SO42--Cl-侵蚀  完全浸泡  损伤机理    
Abstract: The soil and groundwater in Northwest China contain high concentrations of aggressive ions such as magnesium, sulfate, and chloride, which lead to serious degradation of the durability of recycled aggregate concrete (RAC) structures buried underground. In order to reveal the durability’s regularity and mechanism, the experiment of RAC with supplementary cementitious materials (SCMs) immersed in Mg2+-SO42--Cl- solution was carried out. The influence of the collocation and replacement ratio about the SCMs on the durability degradation laws of RAC was studied. Afterwards, the mineral composition and its relative content were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry methods. The results show that the RAC with 10% fly ash+20% slag had better durability, while the RAC with more than 10% silica fume or 10% metakaolin had worse durability. Aggressive ions reacted with hydration products to form corrosion products with large grain sizes, which accelerated C-S-H transforming to M-S-H. Otherwise, crystalline salt was formed under the interaction between aggressive ions and original ions in pore solution, promoting the initiation and expansion of cracks. The combined action of chemical corrosion and physical damage destroyed the microstructure and accelerated aggressive ions diffusion, leading to chemical corrosion-microstructure damage-ions transportation. Micro-cracks and capillary pores were appeared in the interface transform zones and mortars, resulting seriously degradation of RAC’s physical and mechanical properties.
Key words:  durability    recycled aggregate concrete    corrosion by Mg2+-SO42--Cl-    full immersion    degradation mechanism
发布日期:  2024-10-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908440);陕西省自然科学基金(2024JC-YBMC-268);国家重点研发项目(2022YFC3803400)
通讯作者:  *王家滨,通信作者,西安工业大学建筑工程学院副教授。2012年硕士毕业于西安建筑科技大学材料科学与工程学院,2017年博士毕业于西安建筑科技大学土木工程学院。主要从事混凝土结构耐久性相关方面的研究。主持/参与国家自然科学基金和省部级项目7项,获陕西省优秀博士学位论文,发表学术论文30余篇。wangjiabin@xatu.edu.cn   
引用本文:    
王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
WANG Jiabin, ZHANG Kaifeng, ZHENG Kanghua, FU Mengtao. Durability Degradation Laws and Mechanism of Recycled Aggregate Concrete Subjected to Mg2+-SO42--Cl- by Full Immersion. Materials Reports, 2024, 38(18): 23050184-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050184  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23050184
1 http:∥paper.people.com.cn/rmrb/html/2023-04/06/nw.D110000renmrb_20230406_2-02.htm.
2 Xiao J, Tang Y, Chen H, et al. Journal of Cleaner Production, 2022, 366, 132895.
3 Guo H, Shi C, Guan X, et al.Cement and Concrete Composites, 2018, 89, 251.
4 Wang J, Zhang K, Hou Z, et al. China Civil Engineering Journal, 2020, 53(11), 21 (in Chinese).
王家滨, 张凯峰, 侯泽宇, 等. 土木工程学报, 2020, 53(11), 21.
5 Zhu H, Li Y, Yao C, et al. Science Technology and Engineering, 2021, 21(14), 5641 (in Chinese).
朱红兵, 李咏灿, 姚晨, 等. 科学技术与工程, 2021, 21(14), 5641.
6 Yi Y, Zhu D, Guo S, et al. Cement and Concrete Composites, 2020, 113, 103695
7 Davood M, Farzaneh N, Hamed N. Construction and Building Materials, 2016, 117, 107.
8 Fouzia S, Bulu P. Journal of Materials in Civil Engineering, 2020, 32(9), 04020264
9 Liu J, Liu Y, Shi L, et al. Journal of Building Materials, 2016, 19(6), 993 (in Chinese).
刘加平, 刘玉静, 石亮, 等. 建筑材料学报, 2016, 19(6), 993.
10 Wu J, Wei J, Huang H, et al. Construction and Building Materials, 2020, 259, 119846.
11 Zhu C, Liu X, Liu C, et al. Construction and Building Materials, 2022, 353, 129101.
12 Boudali S, Kerdal D. E, Ayed K, et al. Construction and Building Materials, 2016, 124, 70.
13 Jena T, Panda S, Panda K. C, et al. Materials Today:Proceedings, 2022, 52, 1236.
14 Corinaldesi V, Donnini J, GiosuéC, et al. Applied science, 2020, 10, 6454.
15 Qi B, Gao J, Chen F, et al. Construction and Building Materials, 2017, 138, 254.
16 Muduli R, Mukharjee B. Construction and Building Materials, 2020, 233, 117223.
17 Davood M, Seyed M. H, Farzaneh N, at al. Journal of Building Engineering, 2020, 29, 101182.
18 Ministry of Housing and Urban-Rural Development of the PRC. Recycled coarse aggregate for concrete:GB/T 25117-2010, China Standard Press, China, 2010(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料:GB/T 25117-2010, 中国标准出版社, 2010.
19 Ministry of Housing and Urban-Rural Development of the PRC. GB/T 14685-2022:Pebble and crushed stone for construction, China Standard Press, China, 2022(in Chinese).
中华人民共和国住房和城乡建设部. GB/T 14685-2022:建设用卵石、碎石, 中国标准出版社, 2022.
20 Ministry of Housing and Urban-Rural Development of the PRC. GB/T 14684-2022:sand for construction, China Standard Press, China, 2022 (in Chinese).
中华人民共和国住房和城乡建设部. GB/T 14684-2022:建设用砂, 中国标准出版社, 2022.
21 Wang J, Hou Z, Zhang K, et al. Materials Reports, 2022, 36(12), 21060067(in Chinese).
王家滨, 侯泽宇, 张凯峰, 等. 材料导报, 2022, 36(12), 21060067.
22 ASTM C1585-20. Standard test method for measurement of rate of absorption of water by hydraulic-cement concrete. ASTM International, 2020.
23 Wang J, Hou Z, Zhang K, at al. Materials Reports, 2022, 36(23), 21080171(in Chinese).
王家滨, 侯泽宇, 张凯峰, 等. 材料导报, 2022, 36(23), 21080171.
24 Wang J, Che Z, Zhang K, et al. Construction and Building Materials, 2023, 368, 130455.
25 Irbe L, Beddoe R. E, Heina D. Cement and Concrete Research, 2019, 116, 71.
26 Xie N, Dang Y, Shi X. Cement and Concrete Research, 2019, 120, 244.
27 Li C, Gu Q, Cheng Q, et al. Journal of East University of Science and Technology (Natural Science Edition), 2005, 31(3), 314(in Chinese).
李春忠, 古庆山, 程起林, 等. 华东理工大学学报(自然科学版), 2005, 31(3), 314.
28 Wang D, Zhang Y, Li Z, et al. Construction and Building Materials, 2023, 369, 130620.
29 Gao S, Gong Y, Ban S, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2567 (in Chinese).
高嵩, 宫尧尧, 班顺莉, 等. 硅酸盐通报, 2020, 39(8), 2567.
30 Bulatović V, Melešev M, Radeka M, et al. Construction and Building Materials, 2017, 152, 614.
31 Chang J, Gu Y, Ansari W. Construction and Building Materials, 2020, 251, 118880.
32 Bernard E, Lothenbach B, Chlique C, et al. Cement and Concrete Research, 2019, 116, 309.
33 Deng G, He Y, Lu L, et al. Journal of Building Engineering, 2022, 56, 104720
34 Geng J, Dave E, Li L, et al. Cement and Concrete Research, 2015, 68, 211.
35 Adel M, Michel F, Celine C, et al. Cement and Concrete Research, 2011, 41, 504.
36 Yang Z, Jiang J, Jiang X, at al. Construction and Building Materials, 2019, 228, 116775.
37 Mathias M, Nele D. Construction and Building Materials, 2017, 155, 630.
38 Zhang Z, Zou Y, Yang J, et al. Cement and Concrete Composites, 2022, 125, 104299.
39 Wang J, Fan Y, Che Z, et al. Construction and Building Materials, 2023, 377, 131149.
40 Wu J, Wei J, Huang H, et al, Construction and Building Materials, 2020, 259, 119846,
41 Lothenbach B, Scrivener K, Hooton R. Cement and Concrete Research, 2011, 41, 1244.
42 George W. S. Cement and Concrete Research, 2004, 34, 1613.
43 Wang P, Mo R, Sui X, et al. Journal of the Chinese Ceramic Society, 2022, 50(2), 512(in Chinese).
王鹏刚, 莫芮, 隋晓萌, 等. 硅酸盐学报, 2022, 50(2), 512.
[1] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[2] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[3] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[4] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[5] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[6] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[7] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[8] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-.
[9] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[10] 王家滨, 车志豪, 侯泽宇, 范一杰, 牛荻涛. 部分浸泡再生混凝土复合盐侵蚀微观特征与损伤演化[J]. 材料导报, 2024, 38(16): 22070227-12.
[11] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[12] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[13] 黄京立, 侯杰, 郑沛祺, 王嘉伟, 陶文宏, 段广彬, 张秀芝. 粉煤灰-矿渣基免烧人造轻集料的制备及性能研究[J]. 材料导报, 2024, 38(13): 23010034-9.
[14] 齐云鹏, 王秋生, 秦力, 商效瑀. MU10再生混凝土承重砌块力学性能与抗冻性试验研究[J]. 材料导报, 2024, 38(11): 22070011-7.
[15] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed