Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 623-630    
  高分子与聚合物基复合材料 |
聚脲涂覆建筑结构抗爆性能研究进展
孙鹏飞1, 黄舰2, 吕平1, 张锐1, 方志强1
1 青岛理工大学土木工程学院,青岛 266033
2 青岛地铁集团有限公司,青岛 266033
Research Progress of Explosion Resistance of Polyurea Coated Building Structure
SUN Pengfei1, HUANG Jian2, LYU Ping1, ZHANG Rui1, FANG Zhiqiang1
1 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 Qingdao Metro Co., Ltd., Qingdao 266033, China
下载:  全 文 ( PDF ) ( 5803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着聚脲弹性体在结构防护领域的大量应用,其抗爆性能的研究逐渐成为一大热点。为有效增强建筑结构在爆炸载荷作用下的防护性能,减轻爆炸事故对我国社会稳定和经济可持续发展带来的危害,本文基于国内外聚脲弹性体涂覆建筑结构抗爆性能的研究现状,介绍了聚脲弹性体优异的综合力学性能和敏感的应变率效应;以建筑结构中墙体的防护和板式构件的防护为重点,综述了聚脲涂覆建筑结构在爆炸冲击载荷作用下的研究进展,指出了聚脲涂覆建筑结构优异的抗爆性能以及尚存在的一些问题。分析结果表明:聚脲材料具有高强度、高应变率等优异的力学性能,在较宽的应变率区段内,随着应变率的增加,聚脲的力学性能会有一定的提高;在爆炸载荷作用下产生变形时,聚脲可以吸收大量能量,不仅能够增强建筑结构的抗爆性能,还能增强结构的整体稳定性,减少结构碎片的产生。对聚脲涂敷建筑结构研究现状、现存问题的概括与总结,有利于促进聚脲材料的研究及工程应用,对建筑结构的爆炸防护研究具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙鹏飞
黄舰
吕平
张锐
方志强
关键词:  聚脲弹性体  建筑结构  力学性能  爆炸载荷  抗爆性能    
Abstract: With the extensive application of polyurea elastomer in structural protection, the research on its explosion resisting performance has gradually become a hot spot. In order to effectively enhance the protective performance of the building structure under the effect of explosion load, and reduce the harm caused by explosion accidents to the stability of our society and the sustainable development of the economy,this paper summarizes the excellent mechanical properties of polyurea based on the research status of the explosion resisting performance of polyurea coated building structures at home and abroad. Focusing on the protection of building wall structures and the protection of building panel members, the research progress of polyurea-coated building structures under the impact of explosive impact loads is reviewed. The excellent explosion resisting performance and unsolved problems of polyurea-coated building structures are pointed out. The analysis results show that the polyurea material has excellent mechanical properties such as high strength and high strain rate. In the wider strain rate section, as the strain rate increases, the mechanical properties of polyurea will be improved to a certain extent. When deformed under the effect of an explosion load, polyurea can absorb a lot of energy, which can not only enhance the anti-explosion performance of the building structure, but also enhance the overall stability of the structure. The summary of the research status and existing problems of polyurea-coated building structures are conducive to promoting the research and engineering application of polyurea materials, and are of great significance to the research on explosion protection of building structures.
Key words:  polyurea elastomer    building structure    mechanical properties    explosive loading    explosion resistance
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  X932  
  TB324  
通讯作者:  hj78158@163.com   
作者简介:  孙鹏飞,2019年6月毕业于山东农业大学,获得工学学士学位。现为青岛理工大学土木工程学院硕士研究生,目前主要研究领域为新型功能材料,具体研究方向为复合材料抗爆抗冲击。黄舰,青岛地下铁道公司副总工程师、规划设计处处长、高工。1982年毕业于兰州铁道学院铁道工程专业。1993进入青岛地铁集团。主持完成了《青岛市城市轨道交通线网规划》,《青岛市快速轨道交通建设规划》及相关各项专题报告。负责《青岛地铁一期工程(3号线)可行性研究报告》编制工作。主持了12项科研课题的研究。主要从事青岛地铁建设规划、设计、施工等管理工作。
引用本文:    
孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
SUN Pengfei, HUANG Jian, LYU Ping, ZHANG Rui, FANG Zhiqiang. Research Progress of Explosion Resistance of Polyurea Coated Building Structure. Materials Reports, 2020, 34(Z2): 623-630.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/623
1 鲁向辉, 周春桂, 王志军, 等. 含能材料, 2013(5), 624.
2 Duan Y L, Yu M G, Yao X Y, et al. China Safety Production Science and Technology, 2018,14(1), 56.
3 蔡桂杰. 弹性体涂覆钢筋混凝土板抗爆作用设计方法研究. 硕士学位论文, 中北大学, 2015.
4 乔菁. 粉煤灰空心球/聚脲复合材料粘弹性研究. 博士学位论文, 哈尔滨工业大学, 2011.
5 Pathak J A, Twigg J N, Nugent K E, et al. Macromolecules, 2008, 41(20), 7543.
6 Sudipto D, Iskender Y, Emel Y, et al. Polymer, 2007, 48(1), 290.
7 黄微波, 杨宇润, 王宝柱. 聚氨酯工业, 1999(4), 7.
8 甘云丹, 宋力, 杨黎明, 等. 中国力学学会. 北京理工大学, 2011, pp. 1.
9 吴冲. 玻璃纤维/聚脲复合材料的微观结构与力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2013.
10 王波, 陈艺顺, 许宏发, 等. 防护工程, 2018, 40(5), 8.
11 Sarvr S S, Daschnel S, Boyre M C, et al. Polymer, 2007, 48, 2208.
12 Yi J, Boyce M C, Lee G F, et al. Polymer, 2006, 47(1), 319.
13 Raman S N, Ngo T, Lu J, et al. Materials and Design, 2013, 50, 124.
14 James T B, Tommy L B. Computers and Structures, 2007, 185(11-14), 891.
15 Govindjee S K, Simo J C. International Journal for Numerical Methods in Engineering, 1995, 38, 3611.
16 Iqbal N, Sharma P K, Kumar D, et al. Construction and Building Mate-rials, 2018, 175, 682.
17 Davidson J S, Porter J R, Dinan R J, et al. Journal of Performance of Constructed Facilities, 2004, 18, 100.
18 Baylot J T, Asce F, Bullock B. Journal of Structural Engineering, 2005, 131(8), 1186.
19 赵红玲, 孙成城, 谢冰. 福建建设科技, 2020(3), 28.
20 张青艳, 靳晓庆, 郑宇轩, 等.工程力学, 2016, 33(4), 205.
21 王军国, 吴祥云, 李泽斌.防护工程, 2017(4), 32.
22 尚伟. 中国力学大会. 杭州, 2019, pp, 3843.
23 Chen Y S, Wang B, Zhang B, et al. Defence Technology, 2020, 16(1), 136.
24 Ha J H, Yi N H, Choi J K, et al. Composite Structures, 2011, 93, 2070.
25 赵鹏铎, 张鹏, 张磊, 等. 北京理工大学学报, 2018, 38(2), 118.
26 贾子健. 强动载荷下聚脲涂覆钢复合结构防护效应研究. 硕士学位论文, 中北大学, 2019.
27 代利辉, 吴成, 安丰江, 等. 中国测试, 2018, 44(10), 157.
28 彭培, 李展, 张亚栋, 等. 爆炸与冲击, 2020, 40(3), 110.
29 蒲兴富. 弹性体增强混凝土砌体墙爆炸响应的数值分析. 硕士学位论文, 宁波大学, 2009.
30 王军国. 喷涂聚脲加固粘土砖砌体抗动载性能试验研究及数值分析. 博士学位论文, 中国科学技术大学, 2017.
31 甘云丹, 蒲兴富, 宋力. 宁波大学学报:理工版, 2011, 24(1), 87.
32 许三罗, 方秦. 解放军理工大学学报(自然科学版), 2010, 11(3), 306.
33 田力, 王若晨. 湖南大学学报(自然科学版), 2019, 46(11), 57.
34 Ahsan S, Amirkhizi A V, Sia N N. Mechanics of Materials,2013,64, 1.
35 王殿玺, 郭香华, 张庆明. 高压物理学报, 2019, 33(2), 86.
36 王小伟, 何金迎, 祖旭东, 等. 工程塑料应用, 2017, 45(5), 63.
37 Kathryu Ackland, Christopher Anderson, Tuan Duc Ngo. International Journal of Impact Engineering, 2013, 51, 13.
38 甘云丹, 宋力, 杨黎明. 兵工学报, 2009,30(S2), 15.
39 张笑与. 聚脲喷涂超大型LNG储罐抗爆数值模拟. 硕士毕业论文, 哈尔滨工业大学, 2018.
40 Liu Q Q, Wang S P, Lin X, et al. Composite Structures, DOI:10.1016/j.compstruct.2019.111852.
41 Jiang Y X, Zhang B Y, Wei J S, et al. International Journal of Impact Engineering, DOI:10.1016/j.ijimpeng.2019.103357.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[8] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[9] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[12] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[13] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[14] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[15] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed