Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 586-589    
  高分子与聚合物基复合材料 |
聚乳酸共混的研究进展
黄爱宾, 刘彩凤, 张晓惠
杭州电子科技大学绿色包装实验室,杭州 310018
Research Progress of Polylactic Acid Blending
HUANG Aibin, LIU Caifeng, ZHANG Xiaohui
Green Packaging Laboratory, Hangzhou Dianzi University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 4432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸是一种生物可降解的脂肪族聚酯,其强度、刚度、气体渗透性等性能可与传统的石油基合成聚合物相媲美。然而,由于其生物降解速率慢、生产成本高、韧性差等缺点,近年来人们尝试采用共混技术来获取其最优性能,已发展出许多新的共混物。本综述总结了近年来的一些研究进展,列举了聚乳酸与生物可降解材料、非生物降解材料的共混相容性研究,以及共混后的生物降解性、机械强度等,以期获得启示,为未来开发新型聚乳酸共混物提供指导方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄爱宾
刘彩凤
张晓惠
关键词:  聚乳酸  共混  降解性  力学性能    
Abstract: Poly (lactic acid) (PLA) is a biodegradable thermoplastic. With low elongation and poor degradation properties, many approaches have been developed to overcome these limitations, including copolymerization, blending and plasticizing to improve the mechanical properties. The modification of PLA using the polymer blending technique to achieve suitable properties for different applications has been receiving significant attention over the past few years. Hence, the aim of this work is to summarize the current developments regarding the preparation and properties of PLA polymer blends. In this review, the recent advances in PLA preparation are broadly introduced. In addition, the miscibility and compatibilization strategies of PLA polymer blends are discussed. The preparations and characterizations of PLA blends with both biodegradable and nonbiodegradable polymers are outlined. Finally, the biodegradation, mechanical properties, and potentiality of PLA blends are presented.
Key words:  PLA    blend    biodegradation    mechanical properties
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ31  
基金资助: 浙江省自然科学基金(Y4090224)
通讯作者:  huangaibin@hdu.edu.cn   
作者简介:  黄爱宾,杭州电子科技大学人文与数字媒体学院副教授,硕士生导师。1999年7月本科毕业于武汉大学化学与分子科学学院,2006年在武汉大学取得高分子化学与物理专业博士学位。2006—2008年在浙江大学从事博士后研究工作,2009年在杭州电子科技大学参加工作。主要从事生物材料学、物联网相关材料学研究工作。2014—2015年,Laval大学从事访问学者工作,近年来发表相关论文十余篇。
引用本文:    
黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
HUANG Aibin, LIU Caifeng, ZHANG Xiaohui. Research Progress of Polylactic Acid Blending. Materials Reports, 2020, 34(Z2): 586-589.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/586
1 Rasal R M, Janorkar A V, Hirt D E.Progress in Polymer Science,2010,35,338.
2 Hamad K, Kaseem K, Yang H W, et al. Express Polymer Letter, 2015,9,435.
3 Dubey S P, Abhyankar H A, Marchante V, et al. Royal Society of Che-mistry Advanced, 2017,7,18259.
4 Nagahata R, Sano D, SuzukiH,et al. Macromolecular Rapid Communications, 2007,28,437.
5 Maharana T, Mohanty B, Negi Y S. Progress in Polymer Science, 2009,34,99.
6 陈学思.塑料科技,2019,47(5),55.
7 Gibbs J W. Elementary principles in statistical mechanics,Scribner's sons, New York,1876.
8 Imre B, Renner K, Pukánszky B. Express Polymer Letter, 2014,8,2.
9 Fredrickson G H, Liu A J, Bates F S. Macromolecules, 1994, 27(9),2503.
10 Li S H, Woo E M. Polymer International, 2008,57,1242.
11 Peesan M, Rujiravanit R, Supaphol P. Journal of Biomaterials Science Polymer Edition, 2006,17,547.
12 Urquijo J, Guerrica-Echevarrıa G, Eguiazabal J I. Journal of Applied Polymer Science, 2015,132,42641/1.
13 Wang H, Sun X, Seib P. Journal of Applied Polymer Science, 2001,82,1761.
14 Zhang J F, Sun X. Macromolecules, 2004,5,1446.
15 Jacobsen S, Fritz H G.Polymer Engineering and Science, 1996,36,2799.
16 Martin O, Averous L. Polymer, 2001,42,6209.
17 Mihai M, Huneault M A, Favis B D,et al. Macromolecular Bioinformation, 2007,7,907.
18 Li H, Huneault M A. International Polymer Processing, 2008,23,412.
19 Shi Q, Chen C, Gao L,et al. Polymer Degradation and Stability, 2011,96,175.
20 Wootthikanokkhan J, Wonggta N, Sombatsompop S,et al. Journal of Applied Polymer Science, 2012,124,1012.
21 Shin B Y, Jang S H, Kim B S.Polymer Engineering and Science, 2011,51,826.
22 Ma P, Bogaerds D, Schmit P,et al. Polymer International, 2012,61,1284.
23 Bonilla J, Fortunati E, Vargas M,et al. Journal of Food Engineering, 2013,119,236.
24 Ljungberg N, Wesslen B. Biomacromolecules, 2005,6,1789.
25 冯立栋,边新超,李杲,等.中国化学会2017全国高分子学术论文报告会,成都,2017,pp.10
26 Bonilla J, Fortunati E, Vargas M,et al. Journal of Food Engineering, 2013,119,236.
27 班长伟,牛明军,段瑞侠.包装工程,2015,36(23),72.
28 郝艳平.聚乳酸增塑与聚对苯二甲酸丁二醇酯增韧改性研究.博士学位论文,吉林大学,2016.
29 Park S B, Hwang S Y, Moon C W,et al. Macromolecules Research, 2010,18,463.
30 Park J W, Im S S. Journal of Polymer Science Part A Polymer Chemistry, 2002,40,1931.
31 Park J W, Im S S.Journal of Applied Polymer Science, 2002,86,647.
32 Sung Bae Park, Sung Yeon Hwang, Cheol Whan Moon. Macromolecular Research, 2010,18(5),463.
33 Yokohara T, Yamaguchi T. European Polymer Journal, 2008, 44,677.
34 Hassan E, Wei Y, Jioa H,et al.Journal of Fiber Bioengineering Information, 2013,6,85.
35 Harada M, Ohya T, Ilda K,et al. Journal of Applied Polymer Science, 2007,106,1813.
36 Sudesh K, Abe H, Doi Y. Progress of Polymer Science, 2000,25,1503.
37 He Y, Hu Z, Ren M,et al. Journal of Material Science: Material in Medicine, 2014,25,561.
38 Zhou Y, Huang Z, Diao X,et al. Polymer Testing, 2015,42,17.
39 Zembouai I, Bruzaud S, Kaci M,et al. Journal of Polymers and the Environment, 2014,22,131.
40 张玉霞,刘学,马青,塑料工业,2014(3),42.
41 Djellali S, Haddaoui N, Sadoum T,et al. Polymer Bulletin, 2015,72,1177.
42 Eguiburu J L, Iruin J J, Fernandez-Berridi M J, et al.Polymer,1998,39,6891.
43 Bao D, Liao X, He G,et al. Journal of Cellular Polymer, 2014,51,349.
44 Ishida S, Nagasaki R, Chino K,et al. Journal of Applied Polymer Science, 2009,113,558.
45 Leja K,et al. Polymer Environment Study, 2010,19,255.
46 Shanshan L V, Yanhua Z, Jiyou G, et al. Colloids and Surfaces B: Biointerfaces, 2017,159,800.
47 Dharmalingam S, Hayes D G, Wadsworth L C, et al. Journal of Polymers and the Environment, 2015,23,302.
48 Weng Y X, Wang L, Zhang M, et al. Polymer Testing, 2013,32,60.
49 Cong D V, Hoang T, Giang N V, et al. Materials Science & Engineering C-Materials for Biological Applications, 2012,32,558.
50 Baena J N, Sessini V, Dominici F,et al. Polymer Degradation and Sta-bility, 2016,132,97.
51 Jaso V, Glenn G, Klamczynski A,et al. Polymer Testing, 2015,47,1.
52 Chumeka W, Pasetto P, Pilard J F, et al. Polymer, 2014,55,4478.
53 Maroufkhani M, Katbab A, Liu W,et al. Polymer, 2017,115,37.
54 Hamad K, Ko Y G, Kaseem M, et al. Asia-Pacific Journal of Chemical Engineering, 2014,9,349.
55 Umer M,et al. Polymer Engineering and Science,2019,59(11), 2273.
56 Ploypetchara N, Suppakul P, Atong D,et al. Energy Procedia, 2014,56,201.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[8] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[9] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[12] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[13] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[14] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[15] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed