Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 447-452    
  金属与金属基复合材料 |
复合材料疲劳强度分布与疲劳验证载荷放大系数
郝新超, 薛斌
中国商飞上海飞机设计研究院,上海 201210
Composite Fatigue Strength Distribution and Fatigue Verification Test Load Enhancement Factor
HAO Xinchao, XUE Bin
COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
下载:  全 文 ( PDF ) ( 3444KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 飞机复合材料结构疲劳验证载荷放大系数(LEF)的基本原理是通过提高试验载荷的方式缩短复合材料结构耐久性(疲劳)验证周期,同时保证疲劳验证在统计上具有足够的可靠性,是经FAA同意的复合材料飞机结构验证方法。由于疲劳强度分布无法通过疲劳试验直接获得,传统的载荷放大系数是在复合材料静强度Weibull分布的基础上结合疲劳寿命的Weibull分布推导得出的,称之为静强度载荷放大系数(SLEF)。在疲劳可靠性理论的基础上,通过研究疲劳强度和疲劳寿命的P-S-N和P-Sa-Sm曲线,提出了一种基于复合材料结构疲劳强度分布和疲劳寿命的Weibull分布的载荷放大系数方法,称之为疲劳强度载荷放大系数(FLEF),通过碳纤维/环氧复合材料结构的疲劳试验验证了该方法的可行性。与静强度载荷放大系数方法相比,疲劳强度载荷放大系数无需通过静强度试验获得静强度概率分布,仅通过疲劳试验即可获得载荷放大系数。 通过试验数据分析可知,在无批量数据的前提下,采用静强度载荷放大系数获得的疲劳载荷放大系数无法保证复合材料疲劳试验验证的可靠性,疲劳强度载荷放大系数法确定的载荷系数具有更小的分散性以及更高的可靠度。采用疲劳强度载荷放大系数法在理论和实践上更适合复合材料疲劳试验载荷放大系数的确定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝新超
薛斌
关键词:  复合材料  载荷放大系数  LEF  疲劳强度  疲劳寿命  Weibull分布  验证试验    
Abstract: The aim of the load enhancement factor (LEF) for fatigue verification of aircraft composite structure is to shorten the composite structure durability (fatigue) verification cycle by increasing the test load, and to ensure that the fatigue verification has sufficient reliability statisticly. It is a FAA approved method for the verification of composite aircraft structure. Because the fatigue strength distribution can not be directly obtained by fatigue test, the traditional LEF is derived from the composite static strength Weibull distribution combined with the fatigue life weibull distribution, which is called the static strength load enhancement factor(SLEF) method. On the basis of fatigue reliability theory, by studying P-S-N and P-Sa-Sm curves of fatigue strength and fatigue life, a method of LEF based on fatigue strength distribution and fatigue life Weibull distribution of composite structure is proposed, which is called fatigue strength load enhancement factor (FLEF) method. The method is verified by carbon fiber/epoxy composite structure fatigue test. Compared with the SLEF method, the FLEF method does not need to obtain the static strength probability distribution through the static strength test, only through the fatigue test, the LEF could be obtained. According to the analysis of test data, the LEF obtained by SLEF method can not guarantee the reliability of composite fatigue test verification without batch data. The LEF determined by FLEF method has smaller dispersion and higher reliability. The FLEF method is more suitable to determine the composite fatigue verification LEF in theory and practice.
Key words:  composite    load enhancement factor    LEF    fatigue strength    fatigue life    Weibull distribution    verification test
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB332  
通讯作者:  haoxinchao@comac.cc   
作者简介:  郝新超,中国商飞上海飞机设计研究院高级工程师,长期从事民用飞机结构设计与分析工作。
引用本文:    
郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
HAO Xinchao, XUE Bin. Composite Fatigue Strength Distribution and Fatigue Verification Test Load Enhancement Factor. Materials Reports, 2020, 34(Z2): 447-452.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/447
1 陈跃良, 雷园玲, 张 勇, 等.工程力学, 2016, 33(1), 195.
2 Abbott R. Test based load enhancement factor for damage tolerance flaw grow testing. Presentation to MIL-17 Workshop, 2005.
3 Abbott R. Society of Automotive Engineers Technical Paper Series Document, 1989, 35(48),658.
4 Composite Materials Handbook-17. CMH-17-3G Polymer Matrix Compo-sites: Materials Usage, Design, and Analysis, Materials sciences corporation, SAE International, Wichita, USA, 2012,pp. 648.
5 Department of Defense. MIL-HDBK-17-1G Polymer matrix composites guidelines for characterization of structural materials, Materials sciences corporation, MIL-HDBK-17 secretariat, USA, 2009,pp.331.
6 John T, Waruna S.Determining the Fatigue Life of Composite Aircraft Structures Using Life and Load-Enhancement Factors. Federal Aviation Administration William J. Hughes Technical Center 87042-60 (DOT/FAA/AR-10/6), 2011.
7 杨乃宾.北京航空航天大学学报,1996,22(3),427.
8 傅惠民,高镇同.航空学报,1988,9(增刊), 72.
9 Ishikawa H.Journal of the Society of Material Science Japan, 1982, 31(62),527.
10 陈跃亮,雷园玲,张勇, 等.应用力学学报,2015,32(6),144.
11 Weibull W. Journal of Applied Mechanics Transactions of the Asme, 1951, 18, 293.
12 熊峻江, 武哲,高镇同.应用数学与力学, 2002,23(10),1055.
13 冯振宇,高庆.机械强度,1998,20(2),149.
14 高镇同,熊峻江.疲劳可靠性, 北京航空航天大学出版社,2000.
15 James Giancaspro, Winson Taam, Raymond Wong.International Journal of Fatigue, 2009,31, 787.
16 陈希孺.概率论与数量统计, 中国科技大学出版社, 2009.
[1] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[2] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[3] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[4] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[5] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[6] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[7] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[8] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[9] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[10] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[11] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[12] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[13] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[14] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[15] 李姗姗, 张雷, 王京红, 罗欣. 2.5维机织复合材料经纬向力学性能实验研究[J]. 材料导报, 2020, 34(Z2): 603-606.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed