Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 395-398    
  金属与金属基复合材料 |
轧制延展率对IF钢箔力学性能的影响
王鸣1, 张旭1, 赵阳2, 都亮1, 程丽丽1, 梁萌1
1 辽宁工程技术大学材料科学与工程学院, 阜新 123000
2 东北大学材料科学与工程学院,沈阳 110819
Effect of Rolling Elongation on the Mechanical Properties of IF Steel Foil
WANG Ming1, ZHANG Xu1, ZHAO Yang2, DU Liang1, CHENG Lili1, LIANG Meng1
1 School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000,China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819,China
下载:  全 文 ( PDF ) ( 4518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 IF钢具有成形性能良好和屈服强度低等特点,可以作为结构组件广泛应用于微电机械系统(MEMS)中。通过对不同轧制延展率的冷轧IF钢箔进行退火处理,利用单轴拉伸、悬臂梁弯曲等实验和分子动力学计算相结合,研究轧制延展率对退火态IF钢箔拉伸性能的影响规律以及IF钢箔疲劳行为的变形损伤机理,并提出了“轧制变形因子”,建立了疲劳寿命、轧制变形因素与外界服役条件之间的变化规律。结果表明:随着轧制延展率的增加,IF钢箔的抗拉强度降低,采用分子动力学模拟拉伸过程得到IF钢的弹性模量值为228 GPa。在相同的循环应变幅作用下,随着轧制延展率的增加,IF钢箔的疲劳寿命逐渐缩短。循环应变幅愈大,轧制变形因子愈小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鸣
张旭
赵阳
都亮
程丽丽
梁萌
关键词:  轧制延展率  IF钢箔  疲劳寿命  力学性能  轧制变形因子    
Abstract: IF steel (interstitial free steel) can be widely used in micro-electro-mechanical system (MEMS) as a structural component for the good for-mability and low yield strength. It can provide theoretical reference and practical value by studying the research on mechanical properties of IF steel foil. Based on the annealing treatment of cold rolling IF steel foil with different rolling extension rates,using the uniaxial tensile cantilever beam bending experiment combined with molecular dynamics calculation, the influence of different rolling elongation on the mechanical properties of IF steel foil was studied,and the deformation and damage mechanism of IF steel foil fatigue behavior were obtained, the rolling deformation factor was proposed. The results showed that with the increase of rolling elongation, the tensile strength of IF steel foil decreases. The elastic modulus value of IF steel was 228 GPa which was tested by the molecular dynamics simulate during the stretching process. The fatigue life of IF steel foil decreases with the increase of rolling elongation under the same cyclic strain amplitude. The larger the cyclic strain amplitude, the smaller the rolling deformation factor.
Key words:  rolling elongation    IF steel foil    fatigue life    mechanical properties    rolling deformation factor
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB332  
基金资助: 辽宁省自然科学基金材料联合基金 (20180510034)
通讯作者:  mwang.lntu@hotmail.com   
作者简介:  王鸣, 辽宁工程技术大学材料科学与工程学院副教授、硕士研究生导师。2005年7月本科毕业于东北大学材料与冶金学院,2011年7月在中国科学院金属研究所-东北大学联合培养取得材料学博士学位, 2011—2013年在德国伊尔梅瑙工业大学进行博士后工作。主要从事锂离子电池负极材料的制备与表征、纳米层状材料的力学变形行为与可靠性研究。近年来,发表论文 20 余篇,包括 Scripta Materialia,Applied Phy-sical Letters,Applied Surface Science,Journal of the European Ceramic Society和Materials Science and Engineering A等。
引用本文:    
王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
WANG Ming, ZHANG Xu, ZHAO Yang, DU Liang, CHENG Lili, LIANG Meng. Effect of Rolling Elongation on the Mechanical Properties of IF Steel Foil. Materials Reports, 2020, 34(Z2): 395-398.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/395
1 Spearing S M. Acta Materialia, 2000, 48(1),179.
2 Arzt E. Acta Materialia, 1998, 46(16),5611.
3 Zhang G P, Volkert C A, Schwaiger R,et al. Microelectronics Reliability, 2007, 47(12),2007.
4 Hofbeck R, Hausmann K, Ilschner B,et al. Scripta Metallurgica, 1986, 20(11),1601.
5 Judelewicz M, Kunzi H U, Merk N,et al. Materials Science and Enginee-ring: A, 1994, 186(1), 135.
6 Hong S K, Weil R.Thin Solid Films, 1996, 283(1-2), 175.
7 Read D T.International Journal of Fatigue, 1998, 20(3), 203.
8 Klein M, Hadrboletz A, Weiss B,et al. Materials Science and Enginee-ring: A, 2001, 56(2),319.
9 Weiss B, Groger V, Khatibi G,et al. Sensors and Actuators Physical, 2002, 99(1-2),172.
10 Zhang G P, Takashima K, Shimojo M,et al. Materials Letters, 2003, 57(9-10),1555.
11 Boyce B L, Michael J R, Kotula P G,et al. Acta Materialia, 2004, 52(6),1609.
12 Allameh S M, Lou J, Kavishe F,et al. Materials Science and Enginee-ring, 2004, 371(1-2), 256.
13 Khatibi G, Betzwar A, Groger V,et al. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(8), 723.
14 Simons G, Weippert C, Dual J,et al. Materials Science and Engineering, 2006, 416(1-2),290.
15 Zhang G P, Takashima K, Higo Y, et al. Materials Science and Enginee-ring, 2006, 426(1-2), 95.
16 Kraft O, Hommel M, Arzt E,et al. Materials Science and Engineering, 2000, 288(2), 209.
17 Hommel M, Kraft O. Acta Materialia, 2001, 49(19),3935.
18 Alaca B E, Sehitoglu H. Acta Materialia, 2002, 50(5),1197.
19 Denis Y, Spaepen F.Journal of Applied Physics, 2004, 95(6),2991.
20 Lacour S P, Wagner S, Huang Z Y. Applied Physics Letters, 2003, 82(15), 2404.
21 Xiang Y, Teng L, Suo Z G,et al.Applied Physics Letters, 2005, 87(16), 161910.
22 Niu R M, Liu G, Wang C,et al. Applied Physics Letters, 2007, 90(16), 161907.
23 Frank S, Gruber P, Handge U A,et al. Acta Materialia, 2011, 59(15), 58812.
24 Wang M, Schaaf P. Journal of Materials Science: Materials in Electronics, 2015, 26(10), 8224.
25 Kraft O, Wellner P, Hommel M,et al.Journal of Materials Research, 2002, 93(5),392.
26 Schwaiger R, Kraft O. Acta Materialia, 2003, 51(1), 195.
27 Zhang G P, Sun K H, Zhang B,et al. Materials Science and Engineering, 2008, 483,387.
28 Sun X J, Wang C C, Zhang J,et al.Journal of Physics D-Applied Physics, 2008, 41(19), 195404.
29 Zhu X F, Zhang G P. Journal of Physics D-Applied Physics, 2009, 42(5),055411.
30 Hofbeck R, Hausmann K, Ilschner B,et al. Scripta Metallurgica, 1986, 20(11),1601.
31 Weiss B, Groger V, Khatibi G,et al. Sensors and Actuators A-Physical, 2002, 99(1-2), 172.
32 Zhang G P, Zhu X F, Zhang B. China,patent,CN101571467, 2007.
33 Yu Q B, Liu X H, Tang D L.Scientific Reports, 2013, 3,3556.
34 戴采云. 微米尺度铜的力学行为及其尺寸效应的研究.博士学位论文,中国科学院研究生院, 2012.
35 Shi H F, Ren X. Mechanical properties of materials, Peking University Press,China,2010.
36 Lynden B R.Science, 1994, 12(4),1704.
37 Zhang J W, Xu C H, Wu Y. Journal of Northeastern University (Natural Science Edition), 2004,25(2),156.
38 Mishin Y, Farkas D, Mehl M J. Physical Review B, 1999, 59(5), 3393.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[6] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[7] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[8] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[9] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[10] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[11] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[12] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[13] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[14] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[15] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed