Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 330-333    
  金属与金属基复合材料 |
合金元素影响高熵合金涂层组织及力学性能综述
郝文俊1, 孙荣禄1,2, 牛伟1,2, 谭金花1, 李小龙1
1 天津工业大学机械工程学院,天津 300387
2 天津市现代机电装备技术重点实验室,天津 300387
Research Progress on the Effects of Alloy Elements on the Microstructure and Properties of High Entropy Alloys
HAO Wenjun1, SUN Ronglu1,2, NIU Wei1,2, TAN Jinhua1, LI Xiaolong1
1 School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 5532KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金突破了传统合金以一种或两种元素为主元的设计理念,将合金设计体系发展到以多种元素为主元的领域。高熵合金主元元素种类和含量多变,具有很大的开发潜力,但目前仍局限于实验探索阶段。对目前该领域存在的问题,科研工作者经过大量的研究发现:合金元素可以通过晶格畸变影响整体性能,如Al、Ti、V、Mo等原子半径较大的元素,Si、B等原子半径较小的元素,都可以通过加剧晶格畸变改变合金性能。本文通过对现有理论的研究,分析了常见合金元素对高熵合金性能特点的影响,最后对仍需深入研究的问题进行了总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝文俊
孙荣禄
牛伟
谭金花
李小龙
关键词:  高熵合金  合金元素  显微组织  力学性能    
Abstract: High-entropy alloys, which broke through the design concept of traditional alloys with one or two elements as the main element,and deve-loped alloy design system to the field of multiple elements.The types and contents of main elements of high-entropy alloys are variable, showing different characteristics in macroscopic properties and microstructures, but the development of alloys is still limited to the experimental exploration stage, and it is difficult to give accurate guidance to the development of alloys through existing theories. For the problems existing in this field,researchers have found that the alloying elements affect the overall performance through lattice distortion, elements with larger atomic radii such as Al, Ti, V, and Mo, and elements with smaller atomic radii such as Si and B can change the alloy's properties by intensifying lattice distortion.This paper focuses on the classification and summary of common elements in high-entropy alloys by studying the existing theories, and analyzes the influence of alloying elements on the characteristics of high-entropy alloys.Finally, it summarizes the issues that need further study.
Key words:  high entropy alloys    alloy elements    microstructure    mechanical properties
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TG174  
通讯作者:  rlsun@tjpu.edu.cn   
作者简介:  郝文俊,天津工业大学机械工程学院硕士研究生,在孙荣禄教授的指导下进行研究,主要研究方向为金属材料表面强化和激光材料加工。孙荣禄,天津工业大学教授,博士研究生生导师,主要从事金属材料表面强化和激光材料加工方面的教学和科研工作,先后主持完成了国家自然科学基金、教育部博士点基金、天津市自然科学基金项目等多项国家和省部级以及企业委托项目,发表学术论文50余篇,其中30余篇被SCI和EI收录。
引用本文:    
郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
HAO Wenjun, SUN Ronglu, NIU Wei, TAN Jinhua, LI Xiaolong. Research Progress on the Effects of Alloy Elements on the Microstructure and Properties of High Entropy Alloys. Materials Reports, 2020, 34(Z2): 330-333.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/330
1 张勇, 陈明彪, 杨潇, 等. 先进高熵合金技术, 化学工业出版社, 2019.
2 Inoue A. Acta Materialia, 2000, 48(1),279.
3 刘谦,王昕阳,黄燕滨,等.材料导报,2019,33(专辑33),392.
4 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004,6(5), 299.
5 Zhang Y, Zuo T T, Tang Z, et al.Progress in Materials Science,2014,61,1.
6 徐祖耀. 材料热力学, 高等教育出版社, 2009.
7 Ruffa A R. Physical Review B, 1982,25(9),5895.
8 Tsai M H, Yeh J W. Materials Research Letters,2014,2(3),107.
9 李立铭,冯运莉,杨丽娜.热加工工艺,2019,48(20),6.
10 Zou Y, Maiti S, Steurer W, et al. Acta Materialia, 2014,65,85.
11 Zhang C, Song A N,Yuan Y, et al. International Journal of Hydrogen Energy, 2020,45(8), 5367.
12 Qi T L, Li Y H, Takeuchi A,et al. Intermetallics,2015,66,8.
13 Moravcik I, Cizek J, Kovacova Z, et al. Materials Science and Enginee-ring: A,2017,701,370.
14 Li Q Y, Zhang H, Li D C, et al. International Journal of Refractory Metals & Hard Materials,2020,88,105195.
15 Pradeep K G, Tasan C C, Yao M J, et al.Materials Science and Enginee-ring: A, 2015,648,183.
16 Zhou Y, Zhou D, Jin X, et al. Scientific Reports, 2018,8,1236.
17 杨铭,刘雄军,吴渊,等.中国科学:物理学,2020,50(6),21.
18 Yen C C, Huang G R, Tan Y C, et al. Journal of Alloys and Compounds,2020,818,152876.
19 Yeh J W, Chang S Y, Hong Y D, et al. Materials Chemistry and Physics, 2007,103(1),41.
20 Tsai K Y, Tsai M H, Yeh J W, et al. Acta Materialia, 2013,61(13), 4887.
21 周云军,张勇,王艳丽,等.稀有金属材料与工程,2007(12),2136.
22 Takeuchi A, Inoue A. Materials Transactions, 2000,41(11),1372.
23 郑必举,蒋业华,胡文,等.功能材料,2016,47(6),6167.
24 鲍亚运,纪秀林,姬翠翠,等.材料工程,2019(11),141.
25 孙娅,吴长军,刘亚,等.材料导报:综述篇,2019,33(4),1169.
26 Qiu X W, Zhang Y P, Liu C G. Jouenal of Alloys and Compounds, 2014,585,282.
27 姜越,程思梦,祖红梅.哈尔滨理工大学学报,2018,23(3),149.
28 刘亮,齐锦刚,王冰,等.特种铸造及有色合金,2015,35(11),1130.
29 何浩然,许俊强,苗欣,等.材料导报:综述篇,2019,33(20),3227.
30 钟永录,董应虎,张瑞卿,等.热加工工艺,2019,48(12),6.
31 苏允海,邓越,窦丽杰,等.焊接学报,2019,40(9),111.
32 吴炳乾,饶湖常,张冲,等.表面技术,2015,44(12),85.
33 周芳,刘其斌,郑波.强激光与粒子束,2015,27(11),272.
34 Zuo T T, Li R B, Ren X J,et al.Journal of Magnetism and Magnetic Materials, 2014,371,60.
35 陈国进,张冲,唐群华,等.稀有金属材料与工程,2015,44(6),1418.
36 Chen Q S, Lu Y P, Dong Y, et al. Transactions of Nonferrous Metals Society of China, 2015,25(9),2958.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[6] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[7] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[8] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[9] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[10] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(Z2): 586-589.
[11] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[12] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[13] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[14] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[15] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed