Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 217-220    
  无机非金属及其复合材料 |
石灰石粉对3D打印水泥基材料性能的影响
赵颖1,2, 刘维胜1, 王欢1, 顾菲1, 车玉君1, 杨华山1
1 贵州师范大学材料与建筑工程学院,贵阳 550025
2 重庆大学材料科学与工程学院,重庆 400044
Influence of Limestone Powder on Performances of 3D Printing Cementitious Materials
ZHAO Ying1,2, LIU Weisheng1, WANG Huan1, GU Fei1, CHE Yujun1, YANG Huashan1
1 School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
2 College of Material Science and Engineering, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 3699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,3D打印技术在建筑领域的发展有重大突破,其因制造速度快、成本低、节能环保等优势受到了越来越多的关注。但现阶段的水泥基材料在3D打印中的应用仍存在诸多不足。3D打印材料的发展是建筑3D打印技术成熟的关键性因素。本工作以掺入石灰石粉的硅酸盐水泥基材料为研究对象,以5%、10%、15%和20%的石灰石粉等量代替水泥,研究石灰石粉对3D打印水泥基材料工作性和力学性能的影响。试验结果表明:适量的石灰石粉等量代替普通硅酸盐水泥可配制工作性能优异、力学性能良好的3D打印材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵颖
刘维胜
王欢
顾菲
车玉君
杨华山
关键词:  3D打印  水泥基材料  工作性能  强度  石灰石粉    
Abstract: In recent years, there have been significant breakthroughs in the development of 3D printing technology in the construction field. Its advantages of fast manufacturing speed, low cost, energy-saving, and environmental protection have attracted more attention. However, there are still flaws in the application of cementitious materials in 3D printing technology. The development of 3D printing materials is a key factor for the maturity of architectural 3D printing. In this paper, the Portland cement with limestone powder was selected as the research object, and the mix ratio suitable for 3D printing cement-based materials was designed. Workability and mechanical strength of the 3D printing cementitious materials with 5%, 10%, 15%, and 20% limestone powder were tested. Test results show that ordinary Portland cement mixed with an appropriate amount of limestone powder can be used as a high-quality 3D printing material. The experimental results show that an appropriate amount of limestone powder can be used to prepare 3D printing materials with excellent working and mechanical properties instead of ordinary Portland cement.
Key words:  3D printing    cementitious materials    performances    strength    limestone powder
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TU528.45  
基金资助: 国家自然科学基金(51669004);国家级大学生创新创业训练项目(201910663001)
通讯作者:  201510003@gznu.edu.cn   
作者简介:  赵颖,2020年6月毕业于贵州师范大学,获得工学学士学位。于2020年9月进入重庆大学攻读硕士学位,现为重庆大学硕士研究生。杨华山,贵州师范大学副教授,硕士研究生导师。2011年毕业于武汉大学,获博士学位。主要从事3D打印水泥基材料的研究。在国内外学术期刊上发表学术论文30余篇,申请专利10项。
引用本文:    
赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
ZHAO Ying, LIU Weisheng, WANG Huan, GU Fei, CHE Yujun, YANG Huashan. Influence of Limestone Powder on Performances of 3D Printing Cementitious Materials. Materials Reports, 2020, 34(Z2): 217-220.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/217
1 丁烈云, 徐捷, 覃亚伟, 等. 土木工程与管理学报, 2015, 32(3), 1.
2 黄树槐, 肖跃加, 莫健华, 等. 中国机械工程, 2000(Z1), 204.
3 常西栋, 李维红, 王乾, 等. 硅酸盐通报, 2019, 38(8),2435.
4 王忠宏, 李扬帆, 张曼茵, 等. 经济纵横, 2013(1),90.
5 李清. 3D打印在建筑业的应用研究.硕士学位论文, 华南理工大学, 2017.
6 杨建江, 陈响.施工技术, 2015, 44(10), 84.
7 张晓光.河南科技, 2014(20),162.
8 李忠富, 何雨薇.土木工程与管理学报, 2015, 32(2), 47.
9 张静, 薛雨桐.城市住宅, 2019, 26(8), 64.
10 王香港, 王申, 贾鲁涛, 等. 混凝土与水泥制品, 2020(4),1.
11 乔星宇, 李韵通, 潘宁, 等. 现代装饰(理论), 2016(6),240.
12 卢秉恒, 李涤尘.机械制造与自动化, 2013, 42(4),1.
13 Chia H N, Wu B M. Journal of Biological Engineering, 2015, 9, 1.
14 丁铸, 李定发, 朱继翔, 等. 墙材革新与建筑节能, 2017(10), 61.
15 雷斌, 马勇, 熊悦辰, 等. 混凝土, 2018(2),145.
16 Perrot A, Rangeard D, Pierre A. Materials and Structures, 2016, 49(4), 1213.
17 曾保胜.四川水泥, 2019(2),319.
18 周永祥, 王永海, 王思娅, 等. 施工技术, 2014, 43(9), 23.
19 杨华山, 方坤河, 涂胜金, 等. 混凝土, 2006(6), 32.
20 史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45(11), 1582.
21 梅松奇, 范进.交通科学与工程, 2018, 34(2), 12.
22 Le T T, Austin S A, Lim S, et al.Materials and Structures, DOI:10.1617/s11527-012-9828-z.
23 Lim S, Buswell R A, Le T T, et al.Automation in Construction,DOI:10.1016/J.AUTCON.2011.06.010.
24 Ma G W, Li Z J, Wang L.Construction and Building Materials, 2018, 162, 613.
25 Buswell R A, Silva W R L D, Jones S Z, et al. Cement and Concrete Research, DOI:10.1016/j.cemconres.2018.05.006.
[1] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[2] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[3] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[4] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[5] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[6] 路建宁, 王娟, 林颖菲, 郑开宏, 王海艳. 表面氧化处理对SiC/A356 Al复合材料组织及性能的影响[J]. 材料导报, 2020, 34(Z2): 381-385.
[7] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[8] 武海鹏, 王威力. 复合材料层合板低速冲击下剩余强度的评价[J]. 材料导报, 2020, 34(Z2): 598-602.
[9] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[10] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[11] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[12] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[13] 周文娟, 侯云芬, 郑东昊. 玻璃纤维对再生骨料板力学性能的影响[J]. 材料导报, 2020, 34(Z1): 216-219.
[14] 周文娟, 张志伟, 徐玉波. 建筑垃圾再生骨料无机混合料的力学及抗冻性能[J]. 材料导报, 2020, 34(Z1): 234-236.
[15] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed