Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 206-211    
  无机非金属及其复合材料 |
再生骨料混凝土在护岸工程应用的可行性
常洪雷1, 陈繁育2, 金祖权3, 王广月2, 刘健1
1 山东大学齐鲁交通学院,济南 250002
2 山东大学土建与水利学院,济南 250061
3 青岛理工大学土木学院,青岛 266033
Feasibility of Utilizing Recycled Aggregate Concrete for Revetment Engineering
CHANG Honglei1, CHEN Fanyu2, JIN Zuquan3, WANG Guangyue2, LIU Jian1
1 School of Qilu Transportation, Shandong University, Jinan 250002, China
2 School of Civil Engineering, Shandong University, Jinan 250061, China
3 School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
下载:  全 文 ( PDF ) ( 4906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用黄河下游护岸工程当地再生骨料设计了多系列混凝土配合比,综合评估再生混凝土的抗压强度、抗折强度、抗冻性及抗碳化性。通过测试不同掺量单掺粗骨料、单掺细骨料及复掺粗细骨料再生混凝土的抗压强度,优选了抗压强度大于40 MPa且再生骨料取代率不低于50%的混凝土配合比:RSF50,RSF70,RSF100。实验结果显示,优选的三种再生混凝土的力学性能、抗冻性及抗碳化性整体上都弱于普通混凝土,但均可满足黄河下游护坡工程的性能要求;三种配合比的混凝土综合性能排序为RSF50>RSF70> RSF100;考虑到再生骨料的取代率,RSF70的综合表现最佳,推荐将其用于制备护坡砌块并在实际护坡工程中应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常洪雷
陈繁育
金祖权
王广月
刘健
关键词:  混凝土  再生骨料  护岸工程  配合比  力学性能  耐久性能    
Abstract: Local recycled aggregates in revetment of the lower Yellow River were used to design a series of concrete mix ratios to comprehensively evaluate the compressive strength, flexural strength, frost resistance and carbonization resistance. By testing the compressive strength of recycled concrete with different ratio of single coarse aggregate, single fine aggregate and mixed coarse and fine aggregate, the mixing ratios of compressive strength greater than 40 MPa and the replacement rate of recycled aggregates not less than 50% are preferred: RSF50, RSF70, RSF100. The experimental results show that the mechanical properties, frost resistance and carbonization resistance of the preferred three mix ratio recycled concrete are generally weaker than normal concrete, but all can meet the performance requirements of slope protection projects in the lower Yellow River. The comprehensive performance of the three mix ratios is ranked as follows: RSF50>RSF70>RSF100. Considering the replacement rate of recycled aggregate, RSF70 has the best comprehensive performance, which is recommended for the preparation of slope protection blocks and for application in actual bank protection projects.
Key words:  concrete    recycled aggregate    revetment engineering    mix proportion    mechanical property    durability
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TU52  
基金资助: 国家自然科学基金青年基金(51908327);山东省自然科学基金青年基金(ZR2019QEE017)
通讯作者:  lj75@sdu.edu.cn   
作者简介:  常洪雷,2018年3月毕业于东南大学,获得材料科学与工程博士学位。山东大学教师,硕士研究生导师,齐鲁交通学院助理研究员。主要从事水泥基材料制备、耐久性及劣化机理的研究。发表学术论文16篇,其中SCI及EI收录10余篇,授权专利2项。担任多个土木工程材料领域顶级国际期刊审稿人。刘健,2005年毕业于天津大学,获得水利水电工程博士学位。山东大学教授,博士研究生导师。主要从事交通基础设施智能检测岩土结构计算分析、安全评估与监控等方面的研究。发表学术论文30余篇,其中SCI及EI收录20余篇,以第一完成人授权专利12项。
引用本文:    
常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
CHANG Honglei, CHEN Fanyu, JIN Zuquan, WANG Guangyue, LIU Jian. Feasibility of Utilizing Recycled Aggregate Concrete for Revetment Engineering. Materials Reports, 2020, 34(Z2): 206-211.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/206
1 郑志禄.中国水运(下半月),2011, 11(3), 146.
2 Limbachiya M C, Leelawat T, Dhir R K.Materials and Structures, 2000, 33(9), 574.
3 José M, Gómez-soberón V.Cement & Concrete Research, 2002, 32(8),1301.
4 崔正龙,路沙沙,汪振双.建筑材料学报, 2012, 15(2), 264.
5 Bairagi N K, Ravande K, Pareek V K. Resources Conservation and Recycling, 1993, 9, 109.
6 王晓飞,李秋义,罗建林,等.混凝土与水泥制品, 2015(5), 85.
7 Cai H, Zhang M, Dang L.Applied Mechanics and Materials, 2012, 174-177, 1277.
8 Sallehan I, Mahyuddin R.Advanced Materials Research, 2014, 935, 184.
9 Yang H F, Deng Z H, Li X L.Advanced Materials Research, 2011, 194-196,1001.
10 Nixon P J.Matériaux et Construction, 1978, 11(5), 371.
11 Torben C H.Materials & Structures, 1986, 19(3),201.
12 邢振贤,周曰农.华北水利水电学院学报, 1998,6(2),30.
13 Debieb F, Courard L, Kenai S.Cement and Concrete Composites, 2010, 32, 421.
14 李飞, 张韬.陇东学院学报, 2016(5), 71.
15 柯国军,张育霖,贺涛,等.混凝土, 2002(4), 47.
16 黄显智,王子明,姜德义.混凝土, 2003(10), 24.
[1] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[2] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[3] 解志益, 周涵, 李庆超, 李东旭. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 160-163.
[4] 金泽康, 张旋, 李敏, 钱春香. 微生物自修复混凝土裂缝自修复动力学模型[J]. 材料导报, 2020, 34(Z2): 194-200.
[5] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[6] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[7] 余波, 黄俊铭, 万伟伟, 杨绿峰. 混凝土模拟液中钢筋钝化和脱钝过程的量化判别方法[J]. 材料导报, 2020, 34(Z2): 227-232.
[8] 郝哲昕, 钱春香, 周横一, 李进, 吴亚东, 张昆. 清水混凝土外观质量信息采集与分析方法及其工程应用[J]. 材料导报, 2020, 34(Z2): 233-241.
[9] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[10] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[11] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[12] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[13] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[14] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[15] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed