Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 104-111    
  无机非金属及其复合材料 |
石墨烯复合材料在空气净化中的应用研究进展
侯若梦1,2, 贾瑛1, 黄远征1, 沈可可1
1 火箭军工程大学导弹工程学院,西安 710025
2 中国人民解放军96037部队,宝鸡 721006
Review on Graphene Composites in Air Purification
HOU Ruomeng1,2, JIA Ying1, HUANG Yuanzheng1, SHEN Keke1
1 School of Missile Engineering,Rocket Force University of Engineering,Xi'an 710025, China
2 The PLA Unit 96037, Baoji 721006, China
下载:  全 文 ( PDF ) ( 11117KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯作为一种新型材料,具有比表面积大、光电性能优异、稳定性好的特点,可以和功能材料复合,如无机半导体、金属-有机骨架材料、纳米纤维、石墨相氮化碳等,通过吸附、催化和过滤等作用来净化空气。本文主要分析了石墨烯基复合材料的特点和优势,总结了其制备方法,重点论述了其在空气净化中的应用研究进展,从带隙宽度和电子结构等热力学的角度,以及增加活性位点、建立异质结、加强气体传质和提高表面电荷传递等动力学的角度,深入探讨了复合材料净化空气的机理,并对未来实用化、低成本、大吸附容量石墨烯基复合材料的发展前景进行了展望。通过总结发现,现在单一组分和二元组分石墨烯复合材料逐渐难以满足高效复杂的净化要求;且大部分粉末状石墨烯复合材料在应用中存在易聚集、易流失的问题。而新型石墨烯气凝胶复合材料和多元石墨烯复合材料具有三维特殊结构,能协同发挥多种材料的特性,在应用中有明显优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯若梦
贾瑛
黄远征
沈可可
关键词:  石墨烯  空气净化  复合材料    
Abstract: Graphene is a new material, which features large specific surface area, excellent photoelectric performance and good stability. The common functional materials, such as inorganic semiconductor, metal organic framework material, nanofiber, graphite phase carbon nitride can combine with graphene to purify the air through adsorption, catalysis or filtration. The characteristics and merits of the formed graphene-based composites were analyzed and the preparation methods were summarized. And the focus is placed on the research progress of their applications in air purification. The mechanisms of purification were thoroughly analyzed from the perspective of thermodynamics, such as band gap width and electron structure. What's more, the dynamical mechanisms to enhance the air purification were discussed, such as increasing active sites, establishing heterojunction, strengthening gas mass transfer and improving surface charge transfer. Then the future prospects for developing practical, low-cost and high-adsorption capacity graphene-based composites were presented. By comparing these graphene-based composites, we find that single component and binary component graphene composites are increasingly unable to meet the high efficiency and complex purification requirements. And most powdered graphene compositeshave the disadvantages of aggregation and bleeding in application. The multi-component graphene composites can develop the advantages of various materials and graphene aerogel composites have the blocky three-dimensional structure, which meet the various need and have obvious advantages in air purification application.
Key words:  graphene    air purification    composites
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB33  
  X51  
  O649  
基金资助: 国家自然科学基金(21875281)
通讯作者:  jyingsx@163.com   
作者简介:  侯若梦,现为火箭军工程大学博士研究生,目前主要研究领域为液体推进剂废水废气的处理。贾瑛,火箭军工程大学教授,主要从事特种能源污染控制方面的研究工作。
引用本文:    
侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
HOU Ruomeng, JIA Ying, HUANG Yuanzheng, SHEN Keke. Review on Graphene Composites in Air Purification. Materials Reports, 2020, 34(Z2): 104-111.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/104
1 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3),183.
2 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306,666.
3 Li X, Yu J, Wageh S, et al. Small, 2016, 12(48),6640.
4 Stankovich S, Dikin D A, Dommett G, et al. Nature, 2006, 442(7100),282.
5 Hummers W S, Offeman R E. American Chemical Society, 1958, 208,1334.
6 Li X S, Cai W W, Colombo L, et al. NanoLetters,2009,9(12),4268.
7 Sun Z, Yan Z, Yao J, et al. Nature, 2010, 468(7323),549.
8 Ruan G, Sun Z, Peng Z, et al. ACS Nano, 2011, 5(9),7601.
9 Geim A K. Science, 2009, 324(5934),1530.
10 Xu Y, Sheng K, Li C, et al. Acs Nano, 2010, 4(7),4324.
11 Xiao X, Liu P, Wang J S, et al. Electrochemistry Communications, 2011, 13(2),209.
12 Pawar R C, Lee C S. Applied Catalysis B Environmental,2013, 144, 57.
13 Zhang N, Yang M Q, Liu S, et al. Chemical Reviews, 2015, 115(18),10307.
14 Zhang Z, Yang W, Zou X, et al. Journal of Colloid & Interface Science, 2012,386(1),198.
15 Lu T, Zhang R, Hu C, et al. Physical Chemistry Chemical Physics, 2013, 15(31), 12963.
16 Xiang Q, Yu J, Jaroniec M, et al. Nanoscale, 2011, 3(9),3670.
17 Sha J W, Zhao N Q, Liu E Z, et al. Carbon, 2014,68,352.
18 Adil K, Belmabkhout Y, Pillai R S, et al. Chemical Society Reviews, 2017,46(11), 3402.
19 Yue Y F, Qiao Z A, Pasquale F F, et al. Journal of the American Chemical Society, 2013,135(26),9572.
20 Jabbari V, Veleta J M, Zarei-Chaleshtori M, et al. Chemical Engineering Journal, 2016, 304,774.
21 Zhang Y, Li G, Lu H, et al. RSC Advances, 2014, 4(15),7594.
22 Zhang P, Gong J L, Zeng G M, et al. Chemosphere, 2018, 204,378.
23 Das S, Wajid A S, Bhattacharia S K, et al. Journal of Applied Polymer Science, 2013, 128(6),4040.
24 Kim C H, Kim B H, Yang K S. Carbon, 2012, 50(7),2472.
25 Roso M, Lorenzetti A, Boaretti C, et al. Applied Catalysis B-environmental, 2015,176,225.
26 Ong W J, Tan L L, Chai S P, et al. Chemical Communications, 2015, 51(5),858.
27 Zhang S, Li J, Wang X, et al. Journal of Materials Chemistry A, 2015, 3,10119.
28 Bai H, Li C, Shi G. Advanced Materials, 2011, 23(9),1089.
29 Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25(18),2554.
30 Zhou S, Jiang W, Wang T, et al. Industrial & Engineering Chemistry Research, 2015, 54(20),5460.
31 Xiao J, Tan Y, Song Y, et al. Journal of Materials Chemistry, 2018, 6(19),9074.
32 Han W, Zang C, Huang Z, et al. International Journal of Hydrogen Energy, 2014, 39(34),19502.
33 Hou S, Lv Y, Wu X, et al. New Journal of Chemistry, 2020, 44(6),2228.
34 Wang W, Yu J, Xiang Q, et al. Applied Catalysis B-environmental, 2012,119,109.
35 Ebrahimi A, Fatemi S. Clean Technologies & Environmental Policy, 2017, 10160,1.
36 Trapalis A, Todorova N, Giannakopoulou T, et al. Applied Catalysis B: Environmental, 2016, 180, 637.
37 Chen Y C, Katsumata K I, Chiu Y H, et al. Applied Catalysis A General, 2015, 490,1.
38 Hu M, Hui K S, Hui K N. Chemical Engineering Journal, 2014, 254,237.
39 Li Y, Miao J, Sun X, et al. Chemical Engineering Journal,2016,298,191.
40 Liu G, Wan M, Huang Z, et al. New Carbon Materials, 2015, 30(6),566.
41 Szcześniak B, Choma J, Jaroniec M, et al. Microporous and Mesoporous Materials, 2019,279,387.
42 沙嫣,沙晓林. 中国专利,CN208229529U,2018-12-14.
43 沙嫣,沙晓林. CN110694351A, 2020-01-17.
44 Li J, Zhang D, Yang T, et al.Journal of Membrane Science, 2018,551,85.
45 Bai Y, Huang Z H, Kang F, et al. Journal of Materials Chemistry A, 2013,1,9536.
46 Nikokavoura A, Trapalis C. Applied Surface Science, 2018, 430,18.
47 Wu H, Bandaru S, Liu J, et al. Applied Surface Science, 2018,430,125.
48 Wang Y, Wang F, He J. Nanoscale, 2013, 5(22),11291.
49 Li P, Zhou Y, Li H, et al. Chemical Communications, 2015, 51(4),800.
50 Low W, Boonamnuayvitaya V. Journal of Environmental Management, 2013,127,142.
51 Fan X F, Liu J M. Journal of the Air & Waste Management Association, 2015,65(1),50.
52 Liang J, Cai Z, Li L, et al.RSC Advances, 2014, 4(10),4843.
53 Yang J, Shi Q, Zhang R, et al. Carbon, 2018,138,118.
54 杨荔, 刘旸, 张瑞阳,等.催化学报, 2018, 39(4),646.
55 Hu J, Chen D, Li N, et al. Applied Catalysis B-environmental, 2018, 236,45.
[1] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[2] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[3] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[4] 赵惠. 成型工艺对钨基复合材料界面组织和性能的影响[J]. 材料导报, 2020, 34(Z2): 351-355.
[5] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[6] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[7] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[8] 王鑫, 张志彬, 胡振峰. 沸石分子筛在金属腐蚀防护领域的应用前景[J]. 材料导报, 2020, 34(Z2): 453-456.
[9] 车会凌, 赵元轶, 冉雄雄, 董皓月, 匡颖, 高姗姗. 不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J]. 材料导报, 2020, 34(Z2): 484-489.
[10] 宋寒, 徐春晓, 王湘宁, 刘韬, 苏力军, 孙阔, 郭慧, 李文静. 不同树脂前驱体配比对无机酚醛气凝胶隔热复合材料性能的影响研究[J]. 材料导报, 2020, 34(Z2): 525-527.
[11] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[12] 林欢, 李万利, 蔡利海, 刘文言. 剪切增稠纤维复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 549-554.
[13] 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
[14] 刘克健, 高玉龙. 一种快速固化的环氧树脂基预浸料及其性能[J]. 材料导报, 2020, 34(Z2): 576-579.
[15] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed