Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 650-656    https://doi.org/10.11896/j.issn.1005-023X.2018.04.029
  材料研究 |
CaO-SiO2-FeO-MgO体系钢渣的氧化改质动力学研究
蒋亮1, 2, 包亦望2, 陈宇红1, Yang Qixing1, 3, 薛同1, 刘贵群1, 韩凤兰1
1 北方民族大学材料科学与工程学院,银川 750021;
2 中国建筑材料科学研究总院绿色建材重点实验室,北京 100024;
3 Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-971 87, Sweden;
Kinetics of the Oxidation Modification Process of CaO-SiO2-FeO-MgO Slag
JIANG Liang1, 2, BAO Yiwang2, CHEN Yuhong1, YANG Qixing1,3, XUE Tong1, LIU Guiqun1, HAN Fenglan1
1 School of Material Science and Engineering, North Minzu University, Yinchuan 750021;
2 China Building MaterialAcademy, Key State Laboratory of Green Building Materials, Beijing 100024;
3 Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Lule? University of Technology, Lule? SE-971 87, Sweden
下载:  全 文 ( PDF ) ( 1537KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过高温煅烧的方式对工业BOF钢渣进行氧化改质。借助热力学分析,利用XRD、SEM-EDS和湿式磁选对改质前后钢渣矿物相进行研究,证实了氧化改质后钢渣中无磁性氧化亚铁向磁性尖晶石相转变并可通过湿式磁选选出,氧化改质最佳温度为1 100 ℃。对CaO-SiO2-FeO-MgO体系钢渣的氧化进行进一步热力学和动力学分析,并与文献中已有CaO-SiO2-FeO体系钢渣研究进行对比。结果表明,成分中镁的添加有益于磁性尖晶石相在空气中生成。钢渣的氧化过程可以被分为三个阶段:初始阶段、化学反应阶段和扩散阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋亮
包亦望
陈宇红
Yang Qixing
薛同
刘贵群
韩凤兰
关键词:  尖晶石  钢渣  氧化  热力学  动力学    
Abstract: An investigation of mineralogical phases in industrial slag transferred from non-magnetic to magnetic substances was carried out in this study, aiming at extraction of superfluous wustite and stabilization of free lime and free periclase. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to investigate the mineralogy and phase distribution. Wet magnetic separation was conducted to determine the recovery rate of iron. The thermodynamic and kine-tic calculations for the oxidation of steel slag in a CaO-SiO2-FeO-MgO system were also performed, and the results were compared with a CaO-SiO2-FeO system. XRD analysis and SEM-EDS observation confirmed the conversion from non-magnetic wustite to magnetite spinel (magnetite/magnesioferrite) after oxidation. Magnetic separation experiment indicated that the optimal oxidation temperature is 1 100 ℃, which coincided well with the thermodynamic calculations. The addition of periclase had a significant influence on the formation of spinel and leaded to the presence of spinel under a partial pressure of oxygen range log10($P_{o_{2}}$)=4.3 (correspon-ding to air). The oxidation process of steel slag could be divided into three steps: initial incubation, chemical reaction and diffusion.
Key words:  spinel    steel slag    oxidation    thermodynamics    kinetics
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TF4  
基金资助: The Project 5 of Sweden CAMM2 (Centre of Advanced Mining and Metallurgy) Work Package 4, WP4(1563365); 宁夏国际合作项目(Grant No. 2013ZYH187); 宁夏科技支撑项目(2014ZYH50)
通讯作者:  陈宇红:女,1970年生,硕士,教授,研究方向为工业废弃物循环利用 E-mail:lyhchen@163.com   
作者简介:  蒋亮:男,1982年生,博士研究生,研究方向为固体废弃物循环利用 E-mail:jiangliang@nun.edu.cn
引用本文:    
蒋亮, 包亦望, 陈宇红, Yang Qixing, 薛同, 刘贵群, 韩凤兰. CaO-SiO2-FeO-MgO体系钢渣的氧化改质动力学研究[J]. 《材料导报》期刊社, 2018, 32(4): 650-656.
JIANG Liang, BAO Yiwang, CHEN Yuhong, YANG Qixing, XUE Tong, LIU Guiqun, HAN Fenglan. Kinetics of the Oxidation Modification Process of CaO-SiO2-FeO-MgO Slag. Materials Reports, 2018, 32(4): 650-656.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.029  或          http://www.mater-rep.com/CN/Y2018/V32/I4/650
1 Li Z, Zhao S, Zhao X, et al. Selective dissolution and cementitious property evaluation of converter steel slag[J].Materials and Structures,2013,46(1-2):327.
2 Wang Q, Yan P, Han S. The influence of steel slag on the hydration of cement during the hydration process of complex binder[J].Science China Technological Sciences,2011,54(2):388.
3 Darken L, Gurry R. The system iron-oxygen. Ⅰ. The wüstite field and related equilibria[J].Journal of the American Chemical Society,1945,67(8):1398.
4 Asi I M, Qasrawi H Y, Shalabi F I. Use of steel slag aggregate in asphalt concrete mixes[J].Canadian Journal of Civil Engineering,2007,34(8):902.
5 Wu S, Xue Y, Ye Q, et al. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures[J].Building and Environment,2007,42(7):2580.
6 Kassim T A, Simoneit B R T, Williamson K J. Recycling solid wastes as road construction materials: An environmentally sustai-nable approach[M]//Water pollution,Springer,2005:59.
7 Murari K, Siddique R, Jain K. Use of waste copper slag, a sustai-nable material[J].Journal of Material Cycles and Waste Management,2015,17(1):13.
8 Liang Y, Li W, Wang X. Influence of water content on mechanical properties of improved clayey soil using steel slag[J].Geotechnical and Geological Engineering,2013,31(1):83.
9 Chan C M, Hamzah N H. The engineering properties of dredged marine soil solidified with activated steel slag[C]//Proceedings of the International Civil and Infrastructure Engineering Conference.Sprin-ger Singapore,2015:427.
10 Iwamasa P, Fruehan R. Effect of FeO in the slag and silicon in the metal on the desulfurization of hot metal[J].Metallurgical and Materials Transactions B,1997,28(1):47.
11 Tong Z, Ma G, Cai X, et al. Characterization and valorization of Kanbara reactor desulfurization waste slag of hot metal pretreatment[J].Waste and Biomass Valorization,2016,7(1):1.
12 Wang W, Lai D Y, Li S, et al. Steel slag amendment reduces me-thane emission and increases rice productivity in subtropical paddy fields in China[J].Wetlands Ecology and Management,2014,22(6):683.
13 Semykina A, Shatokha V, Seetharaman S. Innovative approach to recovery of iron from steelma-king slags[J].Ironmaking & Steelmaking,2013,37(7):536.
14 Semykina A, Shatokha V, Iwase M, et al. Kinetics of oxidation of divalent iron to trivalent state in liquid FeO-CaO-SiO2 slags[J].Metallurgical and Materials Transactions B,2010,41(6):1230.
15 Semykina A. The kinetics of oxidation of liquid FeO-MnO-CaO-SiO2 slags in air[J].Metallurgical and Materials Transactions B,2012,43(1):56.
16 Zhang L, Zhang L, Wang M, et al. Oxidization mechanism in CaO-FeOx-SiO2 slag with high iron content[J].Transactions of Nonferrous Metals Society of China,2005,15(4):938.
17 Zhao H, Yu Q, Wei J, et al. Influence on composition and morpho-logy of mineral of steel slag and cementitious property[J].Journal of Wuhan University of Technology,2010,32(15):22.
18 Shi C, Hu S. Cementitious properties of ladle slag fines under autoclave curing conditions[J].Cement and Concrete Research,2003,33(11):1851.
19 Reddy A S, Pradhan R, Chandra S. Utilization of basic oxygen furnace (BOF) slag in the production of a hydraulic cement binder[J].International Journal of Mineral Processing,2006,79(2):98.
20 Zhang Y, Li H, Yu X. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation[J].Journal of Hazardous Materials,2012,213(4):167.
21 Murphy J N, Meadowcroft T R, Barr P V. Enhancement of the cementitious properties of steelmaking slag[J].Canadian Metallurgical Quarterly,2013,36(5):315.
22 Li J, Yu Q, Wei J, et al. Structural characteristics and hydration kinetics of modified steel slag[J].Cement and Concrete Research,2011,41(3):324.
23 Barnett S, Halliwell M, Crammond N, et al. Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting[J].Cement & Concrete Composites,2002,24(3):339.
24 Yadav U, Pandey B, Das B, et al. Influence of magnesia on sintering characteristics of iron ore[J].Ironmaking & Steelmaking,2013,29(2):91.
25 Turkin A, Drebushchak V, Kovalevskaya Y, et al. Low-temperature heat capacity of magnesioferrite, MgFe2O4[J].Journal of Thermal Analysis and Calorimetry,2008,92(3):717.
26 Li X, Wang T, Jiang X, et al. Effect of electromagnetic field on melting slag resistance of MgO-C refractories[J].Journal of The Chinese Ceramic Society,2011,39(3):452.
27 Richards R G, White J. Phase relationships of iron-oxide-containing spinels. Part Ⅰ. relationships in the system Fe-Al-O[J].Transactions of British Ceramic Society,1954,53(4):233.
28 O’neill H S C, Annersten H, Virgo D. The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and M?ssbauer spectroscopy[J].The American Mineralogist,1992,77(7-8):725.
29 Harrison R, Putnis A. Determination of the mechanism of cation ordering in magnesioferrite (MgFe2O4) from the time- and temperature-dependence of magnetic susceptibility[J].Physics and Chemistry of Minerals,1999,26(4):322.
30 Néel L. Ferromagnetic compounds of manganese with perovskite structure[C]// Annales de Physique,1948:137.
31 Blasse G. Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structure[M].The Netherlands:Philips Research Laboratories Eindhoven,1964:120.32 Li C, Sun H, Bai J, et al. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J].Journal of Hazardous Materials,2010,174(1):71.
33 Blackman L. On the formation of Fe2+ in the system MgO-Fe2O3-MgFe2O4 at high temperatures[J].Journal of the American Cera-mic Society,1959,42(3):143.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[3] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[4] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[5] 彭寿, 赵凤阳, 曹欣, 单传丽. 澄清剂氧化锡对TFT-LCD基板玻璃澄清效果的影响[J]. 材料导报, 2019, 33(z1): 195-198.
[6] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[7] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[8] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[9] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[10] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[11] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[12] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[13] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[14] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[15] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed