Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 234-237    https://doi.org/10.11896/j.issn.1005-023X.2018.02.015
  物理   材料研究 |材料 |
固溶温度对TP347HFG耐热钢组织和性能的影响
张弘,周平,孙兰,范洪远
四川大学制造科学与工程学院,成都 610065
Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel
Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN
Department of Manufacturing Science and Engineering,Sichuan University, Chengdu 610065
下载:  全 文 ( PDF ) ( 2016KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用金相显微镜、扫描电镜、布氏硬度测试、拉伸测试等手段研究了不同固溶温度下TP347HFG钢的组织和性能。结果表明,随着固溶温度升高,TP347HFG耐热钢晶粒度降低,固溶温度为1 180 ℃时晶粒尺寸、形状均匀;固溶温度为1 210 ℃时晶粒明显长大,且尺寸不均匀;TP347HFG耐热钢第二相由大颗粒相和小颗粒相组成,其主要成分均为NbC;固溶温度为1 120 ℃和1 180 ℃时小颗粒第二相在晶界析出,对晶界强化作用显著,1 210 ℃时第二相大部分在晶粒内部析出,并有Ostwald熟化现象发生,细小第二相消溶而较大颗粒第二相变大,从而影响基体性能;固溶温度为1 120 ℃和1 180 ℃时其抗拉强度和Rp0.2最高,随着固溶温度的升高,伸长率增加而硬度降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张弘
周平
孙兰
范洪远
关键词:  TP347HFG耐热钢  固溶温度  组织  性能    
Abstract: 

TP347HFG heat resistant steel with different solution temperature were characterized by OM, SEM, hardness and tensile strength test, and its microstructure and corresponding properties were investigated as well. Results show that the grain size of TP347HFG heat resistant steel decreases as the solution temperature increases. Their crystalline sizes are evenly distributed with the solution temperature at 1 180 ℃, whereas the crystalline sizes increase and unevenly disperse at 1 210 ℃. The second phase of TP347HFG heat resistant steel, which is mainly NbC, is composed of both large particles and small particles. Small second phase precipitate at the grain boundary at 1 180 ℃ and 1 120 ℃, which can strengthen the grain boundaries. Most part of the second phase precipitate at 1 210 ℃ in the grains with simultaneous occurrence of the Ostwald ripening phenomenon, where the particle distribution of small second phase diminishes while that of larger one increases, and thus bringing the change of corresponding fundamental properties. The values of tensile strength and Rp0.2 reach their peaks with the solution temperature at 1 120 ℃ and 1 180 ℃. The elongation property of this material improves while its hardness decreases, as the increasing solution temperature.

Key words:  TP347HFG heat resistant steel    solution temperature    microstructure    properties
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG142.1  
基金资助: 四川省科技支撑计划(2015GZ0055)
引用本文:    
张弘,周平,孙兰,范洪远. 固溶温度对TP347HFG耐热钢组织和性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 234-237.
Hong ZHANG,Ping ZHOU,Lan SUN,Hongyuan FAN. Effect of Solution Temperature on Microstructure and Properties of TP347HFG Heat Resistant Steel. Materials Reports, 2018, 32(2): 234-237.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.015  或          http://www.mater-rep.com/CN/Y2018/V32/I2/234
Element C Si Mn P S Ni Cr Nb Fe
Content 0.072 0.37 1.40 0.028 0.003 10.8 17.7 0.7 Bal.
表1  TP347HFG耐热钢的化学成分 (质量分数,%)
Sample 1# 2# 3# 4# 5#
Solution
temperature/℃
1 120 1 150 1 180 1 210 Non heat
treatment
Holding time/min 20
Cool type Water cooling
表2  1—5号试样热处理工艺
图1  拉伸试样尺寸(单位:mm)
图2  不同固溶处理温度下样品的金相图:(a)1 120 ℃, (b)1 150 ℃,(c)1 180 ℃,(d)1 210 ℃, (e)original sample
Solution
temperature/℃
1 120 1 150 1 180 1 210 Original
sample
M 500 500 500 200 500
P? 12.5 11.6 10.4 12.0 14.5
L/mm 140 140 140 140 140
G 7.7 7.5 7.1 4.9 8.1
表3  试样晶粒度
图3  试样的SEM图片:(a)1 120 ℃,(b)1 150 ℃,(c)1 180 ℃,(d)1 210 ℃,(e)original sample
图4  (a)大颗粒第二相及(b)小颗粒第二相成分EDS分析
Solution
temperature/℃
1 120 1 150 1 180 1 210 Original
sample
Tensile strength
MPa
489 479 489 471 459
Rp0.2/MPa 234 230 235 210 222
Elongation/% 59.7 60.1 60.2 65.8 57.5
Brinell hardness 163 156 155 149 159
表4  TP347HFG钢抗拉强度、Rp0.2、伸长率及硬度值
1 Sandhya H, Adisom A, Amomvadee V . Exergy analysis of ultra super-critical power plant[J]. Energy Procedia, 2013,37:2544.
2 Gibbons T B . Superalloys in modern power generation applications[J]. Materials Science and Technology, 2009,25(2):129.
3 Viswanathan R, Henry J F, Tanzosh J , et al. U.S.program on materials technology for ultra-supercritical coal power plants[J]. Journal of Materials Engineering and Performance, 2005,14(3):281.
4 Iseda A, Okada H, Sembah H , et al. Long term creep properties and microstructure of SUPER304H,TP347HFG and HR3C for A-USC boilers[J]. Energy Materials, 2007,2(4):199.
5 5 彭芳芳, 彭志方, 陈方玉 . 600MW/1000MW超超临界机组新型钢国产化研讨会报告文集[R]. 扬州:中国电力期刊网, 2009: 178.
6 Fu S L, Shi C C, Xi S X . Ultrasupercritical power plant development and high temperature materials applications in China[J]. Energy Materials, 2008,3(4):201.
7 Yagi K, Merckling G, Kem T U , et al. Creep properties of heat resistant steels and superalloys[M]. Berlin:Springer-Verlag, 2004: 248.
8 8 刘正东, 程世长, 王起江 , 等. 中国600 ℃火电机组锅炉钢研究进展[M]. 北京: 冶金工业出版社, 2011: 160.
9 Peng Zhifang, Dang Yingying, Peng Fangfang . Effect of carbon and niobium on phase stability and creep rupture life at 650 ℃ for TP347HFG steel[J]. Acta Metallurgica Sinica, 2012,48(4):450(in Chinese).
10 彭志方, 党莹樱, 彭芳芳 . C、Nb含量对TP347HFG钢在650 ℃析出相参量和持久寿命的影响[J]. 金属学报, 2012,48(4):450.
11 Sounmail T . Precipitation in creep resistant austenitic stainlesssteels[J]. Materials Science and Technology, 2001,17(1):1.
12 11 虞觉奇. 二元合金状态图集[M]. 上海: 上海科学技术出版社, 1983: 332.
13 Kyu H L, Jin Y S, Joo Y H , et al. Effect of Nb and Cu on the high temperature creep properties of a high Mn-N austenitic stainless steel[J]. Materials Characterization, 2013,83(3):49.
14 Onizawa T, Wakai T, Ando M , et al. Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel[J]. Nuclear Engineering and Design, 2008,238(2):408.
15 Sawaragi Y, Hirano S . The development of a new 18-8 austenitic stainless steel (0.lC-18Cr-9Ni-3Cu-Nb,N)with high elevated temperatures strength for fossil power boilers[J]. Mechanical Behavior of Materials VI, 1992,4:589.
16 Minami Y, Kimura H, Ihara Y . Microstructural changes in austenitic stainless steels during long-term aging[J]. Materials Science and Technology, 1986,2(8):795.
17 Hao Hongyuan, Cao Shirui, Hao Yao . Effect of solid solution/aging treatment on microstructure and properties of austenitic base heat resistant steel[J]. Heat Treatment of Metals, 2006,31(4):65(in Chinese).
18 郝红元, 曹士锐, 郝曜 . 固溶/时效处理对奥氏体耐热钢组织与性能的影响[J]. 金属热处理, 2006,31(4):65.
19 17 崔忠圻, 覃耀春 . 金属学与热处理[M]. 第二版.北京: 机械工业出版社, 2014. 350.
20 Glandman T . The physical metallurgyofmicro alloyed steel[M]. Cambridge: The University Press, 1997: 123.
21 19 樊东黎, 徐跃明, 佟晓辉 . 热处理技术数据手册[M]. 北京: 机械工业出版社, 2006: 123.
22 Zhang Wei . Inspection methods of austenitic grain size in stainless steel[J]. Material & Heat Treatment, 2010,39(22):66(in Chinese).
23 张卫 . 钢的奥氏体晶粒度检验方法[J]. 材料热处理技术, 2010,39(22):66.
24 Jia Hongbin, Zhang Hongmei , et al. Austenite grain growth beha-vior of fine-grain and high-strength IF steel in heating process[J]. Hot Working Technology, 2015,44(4):56(in Chinese).
25 贾宏斌, 张红梅 , 等. 加热过程中细晶高强IF钢奥氏体晶粒长大规律研究[J]. 热加工工艺, 2015,44(4):56.
26 Chen Zhenyu, Hu Chuanshun, Qin Hua , et al. Effect of heating temperature on grain size of 2.25Cr-1Mo-0.25V steel[J]. Hot Working Technology, 2013,42(4):23(in Chinese).
27 陈振宇, 胡传顺, 秦华 , 等. 加热温度对2.25Cr-1Mo-0.25V钢晶粒度的影响[J]. 热加工工艺, 2013,42(4):23.
28 Uhm S, Moom J, Lee C . Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels:Considering the effect of initial grain size on isothermal growth behavior[J]. ISIJ International, 2004,44(7):1230.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[4] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[7] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[8] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[13] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed