Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 143-149    https://doi.org/10.11896/j.issn.1005-023X.2017.07.022
  先进结构复合材料 |
LGF/PBT/RP复合材料的玻纤长度与阻燃性能的相关性研究*
赵婉1,何敏1,2,张道海1,2,黄涛1,张丽1
1 贵州大学材料与冶金学院,贵阳 550025;
2 国家复合改性聚合物材料工程技术研究中心,贵阳 550014
Correlation Between Glass Fiber Length and Flame Retardant Properties of LGF/PBT/RP Composites
ZHAO Wan1, HE Min1,2, ZHANG Daohai1,2, HUANG Tao1, ZHANG Li1
1 College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025;
2 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014
下载:  全 文 ( PDF ) ( 2191KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同长度的长玻纤增强聚对苯二甲酸丁二醇酯/红磷 (LGF/PBT/RP) 阻燃复合材料,通过光学显微镜、燃烧性能测试、扫描电镜(SEM)、动态热机械分析(DMA)和力学性能测试等研究了玻纤长度与阻燃性的相关性。结果表明:随着玻纤长度增加,LGF/PBT/RP阻燃复合材料中玻纤的实际有效长度分布先向玻纤较长区域移动再向玻纤较短区域移动,玻纤在该基体中开始呈现均匀分散后逐渐出现团聚现象,且LGF/PBT/RP阻燃复合材料的垂直燃烧(UL-94)的燃烧时间、平均热释放速率 (Av-HRR)、总烟释放量(TSR)、总热释放量(THR)、平均有效燃烧热(Av-EHC)和火蔓延指数(FIGRA)呈先减小后增大的趋势,极限氧指数(LOI)则呈先增大后减小的趋势。这表明玻纤的实际有效长度增大,有助于提高LGF/PBT/RP阻燃复合材料的阻燃性能,即玻纤长度对LGF/PBT/RP阻燃复合材料的阻燃性有影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵婉
何敏
张道海
黄涛
张丽
关键词:  长玻纤  阻燃  聚对苯二甲酸丁二醇酯  有效长度  复合材料  拔出长度    
Abstract: The relationship between the glass fiber length and flame retardant of LGF/PBT/RP composites was studied. According to the analysis of optical microscope,combustion properties test, scanning electron microscope (SEM), dynamic thermomechanical analysis (DMA) and mechanical properties, it was found that with the initial length of glass fiber increasing, the effective fiber length distribution of LGF/PBT/RP composites firstly moved toward the longer region of glass fiber, then moved toward the shorter area of glass fiber.Moreover, the dispersion of glass fibers of LGF/PBT/RP composites turned from homogeneous to uneven. With increase of the length of glass fiber, the burning time of vertical burning test (UL-94), average heat release rate (Av-HRR), total smoke release (TSR), total heat release (THR), average effective heat of combustion(Av-EHC) and fire growth rate(FIGRA)of LGF/PBT/RP composite firstly decreased and then increased. The change trend of limiting oxygen index(LOI) was opposite. This behavior indicated that with the effective length of glass fiber increasing, the flame retardant performance of LGF/PBT/RP compo-site was improved, namely, the glass fiber length had an effect on flame retardant performance of LGF/PBT/RP composite.
Key words:  long glass fiber    flame retardance    polybutylene terephthalate    effective length    composites    pull-out length
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB33  
基金资助: *贵州省科技计划项目(黔科合重大专项字(2015)6005号;黔科合KY字[2015]359;黔科合人才[2016]5346号);贵州省科技厅科技联合基金项目(黔科合LH字[2015]7708);贵州大学研究生创新基金(研理工2016021);贵州省科技计划项目(黔科合成果(2016)4526;黔科合成果[2016]4535)
通讯作者:  张道海,男,1981年生,博士,副研究员,主要从事高性能复合材料研究及应用E-mail:zhangdaohai6235@163.com   
作者简介:  赵婉:女,1990年生,硕士研究生,主要从事聚合物阻燃材料研究及应用
引用本文:    
赵婉,何敏,张道海,黄涛,张丽. LGF/PBT/RP复合材料的玻纤长度与阻燃性能的相关性研究*[J]. 《材料导报》期刊社, 2017, 31(7): 143-149.
ZHAO Wan, HE Min, ZHANG Daohai, HUANG Tao, ZHANG Li. Correlation Between Glass Fiber Length and Flame Retardant Properties of LGF/PBT/RP Composites. Materials Reports, 2017, 31(7): 143-149.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.022  或          http://www.mater-rep.com/CN/Y2017/V31/I7/143
1 Gao F, Tong L, Fang Z. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate)[J]. Polym Degrad Stab,2006,91(91):1295.
2 Yang W, Hu Y, Tai Q, et al. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles[J]. Composites Part A:Appl Sci Manufacturing,2011,42(7):794.
3 Huang Qian. The preparation and performance research of halogen-free flame retardant PBT engineering plastics [D].Guangzhou: South China University of Technology,2011(in Chinese).
黄倩. 无卤阻燃PBT工程塑料的制备与性能研究[D]. 广州:华南理工大学,2011.
4 Lang Liuchun, Ye Nanbiao, Li Jianjun, et al. Flame retardancy and thermal stability of halogen-free flame retardant PBT [J]. Plastics Sci Technol,2010,38(6):49(in Chinese).
郎柳春, 叶南飚, 李建军,等. 无卤阻燃PBT的阻燃性及热稳定性[J]. 塑料科技,2010, 38(6):49.
5 Hartikainen J, Hine P, Szabo J S. Polypropylene hybrid composites reinforced with long glass fibers and particulate filler[J]. Compos Sci Technol,2005,65(2):257.
6 Chattopadhyay S K, Khandal R K, Uppaluri R, et al. Influence of varying fiber lengths on mechanical, thermal, and morphological properties of MA-g-PP compatibilized and chemically modified short pineapple leaf fiber reinforced polypropylene composites[J]. J Appl Polym Sci,2009,113(6):3750.
7 Yang B, Leng J, He B, et al. Influence of fiber length and compatibilizer on mechanical properties of long glass fiber reinforced polya-mide 6,6[J]. J Reinforced Plastics Compos, 2012,31(16):1103.
8 Tao Z, Wang Y, Li J, et al. Fabrication of long glass fiber reinforced polyacetal composites: Mechanical performance, microstructures, and isothermal crystallization kinetics[J]. Polym Compos,2014,36(10):1826.
9 Huang Huilong. Study on long glass fiber reinforced nylon 66 Composites [D]. Guangzhou:South China University of Technology, 2013(in Chinese).
黄惠龙. 长玻纤增强尼龙66复合材料的研究[D]. 广州:华南理工大学, 2013.
10 Casu A, Camino G, Giorgi M D, et al. Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres-poly(butylene terephthalate)[J]. Fire Mater, 1998,22(1):7.
11 Liu Y, Yi J S, Cai X F. Application of a novel halogen-free intumescent flame retardant for acrylonitrile-butadiene-styrene [J]. J Appl Polym Sci,2012,124(2):1475.
12 Ou Yuxiang, Liu Zhiguo, Wu Junhao. Combustion behavior and flame retardant synergism of PA6 flame-retarded with melamine polyphosphate and melamine octomolybdate[J]. J Beijing Institute of Technology,2004,24(9):829(in Chinese).
欧育湘, 刘治国, 吴俊浩. 聚磷酸蜜胺与八钼酸蜜胺阻燃PA6的燃烧行为及协同作用[J]. 北京理工大学学报,2004,24(9):829.
13 Jian R K, Chen L, Hu Z, et al. Flame-retardant polycarbonate/acrylonitrile-butadiene-styrene based on red phosphorus encapsulated by polysiloxane: Flame retardance, thermal stability, and water resistance [J]. J Appl Polym Sci,2012,123(5):2867.
14 Balabanovich A I, et al. Fire retardance in poly(butylene terephthalate). The effects of red phosphorus and radiation-induced cross-links[J]. Macromolecular Mater Eng,2004,289(2):181.
15 He B, Liu H, Leng J, et al. Mechanical properties of long glass fiber-reinforced polypropylene composites and their influence factors[J]. J Reinforced Plastics Compos,2011,30(3):222.
16 Essabir H, Elkhaoulani A, Benmoussa K, et al. Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites [J]. Mater Des,2013,51(5):780.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed