Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18176-18181    https://doi.org/10.11896/cldb.20080053
  金属与金属基复合材料 |
回火温度对Cr7钢耐CO2腐蚀性能的影响
顾洋, 宋帅, 武会宾, 张志慧, 张鹏程
北京科技大学钢铁共性技术协同创新中心,北京 100083
Effect of Tempering Temperature on CO2 Corrosion Resistance of Cr7 Steel
GU Yang, SONG Shuai, WU Huibi, ZHANG Zhihui, ZHANG Pengcheng
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 21394KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用高温高压釜加速腐蚀试验,获得了Cr7钢经不同回火处理后在CO2环境中的静、动态腐蚀速率,并利用SEM结合XRD分析了样品的组织及腐蚀产物类型。结果表明,Cr7钢经不同温度回火后的组织均为回火马氏体,其耐蚀性能随着回火温度的升高呈下降趋势,静态腐蚀产物为Cr(OH)3和FeCO3,动态腐蚀膜表面还附着由FeCO3和CaCO3组成的颗粒物。扫描开尔文探针和电子背散射衍射分析结果显示,经200 ℃和500 ℃回火后的样品电位差约为80 mV,600 ℃回火后的样品电位差增大到了118 mV。回火过程中马氏体板条的合并使得大角度晶界的比例升高,从而使微区电位起伏加大,这是引起Cr7钢耐蚀性能下降的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾洋
宋帅
武会宾
张志慧
张鹏程
关键词:  中Cr钢  CO2腐蚀  回火马氏体  大角度晶界  扫描开尔文探针    
Abstract: The static and dynamic corrosion rates of Cr7 steel after different tempering treatment in CO2 environment were gained by high temperature autoclaving to accelerate corrosion tests. The microstructure and corrosion products of the samples were analyzed by SEM and XRD. The results show that the microstructure of Cr7 steel after tempering at different temperatures was tempered martensite, and the corrosion resistance decreased with the increase of tempering temperature. The static corrosion products were Cr(OH)3 and FeCO3, and the dynamic corrosion film surface was also attached with particles composed of FeCO3 and CaCO3. The results of scanning Kelvin probe and electron backscatter diffraction analysis showed that the potential difference of the sample after tempering at 200 ℃ and 500 ℃ was about 80 mV, and the potential difference of the sample after tempering at 600 ℃ increased to 118 mV. The merging of martensite laths during the tempering process leads to an increase in the proportion of high-angle grain boundaries, which leads to increased micro-region potential fluctuations, which is the main reason for the decline of the corrosion resistance of Cr7 steel.
Key words:  medium Cr steel    CO2 corrosion    tempered martensite    high-angle boundary    scanning Kelvin probe microcopy
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TG172.3  
基金资助: 国家重点研发计划(2017YFB0304900)
作者简介:  顾洋,北京科技大学钢铁共性技术协同创新中心2016级博士研究生,主要从事耐蚀管线钢方面的研究。
武会宾,钢铁共性技术协同创新中心教授,博士研究生导师,中国金属学会轧钢分会焊管学术委员会委员。2006年在北京科技大学材料科学与工程学院获博士学位,2013—2014年美国韦恩州立大学工程学院做访问学者。承担了15项国家及省部级科研项目;已指导或协助指导研究生60余名,发表学术论文200余篇,获得授权发明专利26项,省部级科技进步一等奖2项,二等奖1项,三等奖3项。
引用本文:    
顾洋, 宋帅, 武会宾, 张志慧, 张鹏程. 回火温度对Cr7钢耐CO2腐蚀性能的影响[J]. 材料导报, 2021, 35(18): 18176-18181.
GU Yang, SONG Shuai, WU Huibi, ZHANG Zhihui, ZHANG Pengcheng. Effect of Tempering Temperature on CO2 Corrosion Resistance of Cr7 Steel. Materials Reports, 2021, 35(18): 18176-18181.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080053  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18176
1 Guo J Y, Hu J, Li Q D, et al. Materials Protection,2017, 50(6),83(in Chinese).
郭建永, 胡军, 李庆达, 等. 材料保护, 2017, 50(6),83.
2 Zhang J, Xu L N, Zhu J Y, et al. Corrosion & Protection, 2017, 38(6), 456 (in Chinese).
张瑾, 许立宁, 朱金阳, 等. 腐蚀与防护, 2017, 38(6), 456.
3 Zhu J, Xu L, Lu M, et al. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11), 1405.
4 Liu Z, Gao X, Du L, et al. Electrochimica Acta, 2017, 232, 528.
5 Liu W, Lu S, Zhang P, et al. Applied Surface Science, 2016, 379, 163.
6 Sun J, Liu W, Lu M. Journal of Chinese Society for Corrosion and Protection, 2008, 28(4), 246(in Chinese).
孙建波, 柳伟, 路民旭. 中国腐蚀与防护学报, 2008, 28(4), 246.
7 Lin X, Liu W, Wu F, et al. Applied Surface Science, 2015, 329(28), 104.
8 Hua Y, Mohammed S, Barker R, et al. Journal of Materials Science & Technology, 2020, 41, 21.
9 Xu L, Xu X, Yin C, et al. Materials Research Express, 2019, 6(9), 96512.
10 Liu Z, Gao X, Li J, et al. Electrochimica Acta, 2016, 213, 842.
11 Li W, Xu L, Qiao L, et al. Applied Surface Science, 2017, 425, 32.
12 Xu L N, Chen T H, Chang W, et al. Journal of University of Science and Technology Beijing, 2012, 34(2), 149(in Chinese).
许立宁, 陈太辉, 常炜, 等. 北京科技大学学报, 2012, 34(2), 149.
13 Xiang Y, Xu M, Choi Y S. Corrosion Engineering, Science and Technology, 2017, 7(52), 485.
14 Jia Z J, Du C W, Liu Z Y, et al. Acta Metallugica Sinica (English Letters), 2011, 24(5), 373.
15 Tan C, Xu X, Xu L, et al. Materials and Corrosion, 2019, 70(2), 366.
16 Liang J M, Tang D, Wu H B, et al. Journal of Southeast University (Na-tural Science Edition), 2013, 43(1), 152 (in Chinese).
梁金明, 唐荻, 武会宾,等. 东南大学学报(自然科学版), 2013, 43(1), 152.
17 Tian Y Q, Fu A Q, Hu J G, et al. Surface Technology, 2019, 48(5), 49 (in Chinese).
田永强, 付安庆, 胡建国, 等. 表面技术, 2019, 48(5), 49.
18 Hu Y Q, He F, Bao W, et al. Surface Technology, 2016, 45(8), 14 (in Chinese).
胡耀强, 何飞, 鲍文, 等.表面技术, 2016, 45(8), 14.
19 Zhu P K, Deng J G, Yan W, et al. Corrosion & Protection, 2014, 35(12), 1221 (in Chinese).
朱培珂, 邓金根, 闫伟, 等. 腐蚀与防护, 2014, 35(12), 1221.
20 Xu L N, Wang B, Lu M X. Acta Metallurgica Sinica, 2016, 52(6), 672 (in Chinese).
许立宁, 王贝, 路民旭.金属学报, 2016, 52(6), 672.
21 Wu T, Wu H B, Li T, et al. Hot Working Technology, 2019, 48(16), 65 (in Chinese).
吴滔, 武会宾, 李涛, 等. 热加工工艺, 2019, 48(16), 65.
22 Wu T, Wu H, Niu G, et al. Corrosion, 2018, 74(7), 757.
23 Liang M H, Zhao G X, Feng Y R, et al. Journal of Materials Enginee-ring, 2006(z1), 31 (in Chinese).
梁明华, 赵国仙, 冯耀荣,等. 材料工程, 2006(z1), 31.
24 Cai Y D, Guo P C, Liu D M, et al. Science China Technological Sciences, 2010, 53(9), 2342.
25 Li L J, Yang Y H, Zhang Y J, et al. Corrosion & Protection, 2018, 39(9), 678 (in Chinese).
李玲杰, 杨耀辉, 张彦军, 等. 腐蚀与防护, 2018, 39(9), 678.
26 Liu W, Chen D, Lu M X. Journal of University of Science and Technology Beijing, 2010, 32(2), 213 (in Chinese).
柳伟, 陈东, 路民旭. 北京科技大学学报, 2010, 32(2), 213.
27 Song S, Gu Y, Yuan R, et al. Welded Pipe and Tube, 2019, 42(4), 13 (in Chinese).
宋帅, 顾洋, 袁睿, 等. 焊管, 2019, 42(4), 13.
28 Jia Z, Du C, Liu Z, et al. Acta Metallurgica Sinica(English Letters), 2011, 24(5), 373.
29 Gu Y, Wu H, Yuan R, et al. Materials Research Express, 2019, 6(4), 46511.
30 Wu H B, Wu T, Niu G, et al. International Journal of Minerals Metallurgy and Materials, 2018, 25(3), 315.
31 Wang Y, Fang X D, Xia Y, et al. Heat Treatment of Metals, 2018, 43(7), 131 (in Chinese).
王岩, 方旭东, 夏焱, 等. 金属热处理, 2018, 43(7), 131.
32 Tang D, Li W, Li Z C, et al. Transactions of Materials and Heat Treatment, 2014, 35(8), 86 (in Chinese).
唐荻, 李维, 李志超, 等.材料热处理学报, 2014, 35(8), 86.
33 Song D, Ma A B, Jiang J H, et al. Corrosion Science, 2011, 53(1), 362.

[1] 卢叶茂, 梁益龙, 龙绍檑, 杨明, 尹存宏. 淬火20CrNi2Mo低碳钢中大角度晶界对强度的影响[J]. 材料导报, 2018, 32(24): 4339-4345.
[2] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[3] 陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed