| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Microscopic Damage Model Based on Two-parameter Yield Criterion |
| ZENG Jiaxing1, LIU Jianxiong1,*, WAN Xiangming1,2, JIA Youdong1, LIANG Yongxin1
|
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China 2 City College, Kunming University of Science and Technology, Kunming 650051, China |
|
|
|
|
Abstract The ductile fracture of plastic metal originates from the development of pores. Analyzing the evolution process of pores and establishing a reasonable damage model facilitates the study of deformation and fracture mechanisms of plastic metal. Two kinds of high-quality carbon structural steels were subjected to uniaxial tensile test. The micro fracture morphology of tensile fracture specimens of the two materials was observed by scanning electron microscope (SEM). From the perspective of vacancy condensation, the nucleation mechanism of voids in the absence of inclusions or second phase particles was analyzed. Considering the influence of hydrostatic pressure on the evolution of pores, based on a two-parameter yield criterion that includes the first invariant of the stress tensor and the second invariant of the deviatoric stress tensor, expressions for plastic dissipation power, microscopic strain rate, and macroscopic stress were derived. On this basis, a macroscopic yield function containing microscopic damage parameters (void volume fraction) was established. When using tensile and compressive yield stresses to define material parameters α and K, the model can be transformed into the Lee model and Gurson model. In addition, this model can also describe the essence of the deterioration of plastic metal mechanical properties caused by void evolution, and has universality in studying the mechanical mechanism of ductile fracture caused by void evolution.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Liu Q, Wang J H, Zhao Z L, et al. Contemporary Chemical Industry, 2015, 44(3), 570 (in Chinese). 刘强, 王建华, 赵泽霖, 等. 当代化工, 2015, 44(3), 570. 2 Li R F, Lin J W, Yue B L, et al. Petrochemical Industry Technology, 2020, 27(1), 72 (in Chinese). 李瑞峰, 林俊文, 岳宝林, 等. 石化技术, 2020, 27(1), 72. 3 Yang S G, Jin Z M, Gao H, et al. Safety Technology of Special Equipment, 2021, 4(3), 18 (in Chinese). 杨树钢, 金宗明, 高宏, 等. 特种设备安全技术, 2021, 4(3), 18. 4 Maire E, Bouaziz O, Di Michiel M, et al. Acta Materialia, 2008, 56(18), 4954. 5 Wu Y J, Zhuang X C, Zhao Z. Journal of Plasticity Engineering, 2013, 20(3), 106 (in Chinese). 吴彦骏, 庄新村, 赵震. 塑性工程学报, 2013, 20(3), 106. 6 Liu L X, Zheng Q L, Zhu J, et al. Rare Metal Materials and Engineering, 2019, 48(2), 0433. 7 Yan H D, Jin H. Acta Metallurgica Sinica, 2019, 55(3), 341 (in Chinese). 闫华东, 靳慧. 金属学报, 2019, 55(3), 341. 8 Huang X W, Zhao W, Zhao J, et al. Journal of Basic Science and Engineering, 2019, 27(5), 1172 (in Chinese). 黄学伟, 赵威, 赵军, 等. 应用基础与工程科学学报, 2019, 27(5), 1172. 9 Qian L Y, Ji W T, Wang X C, et al. Journal of Mechanical Engineering, 2020, 56(24), 72 (in Chinese). 钱凌云, 纪婉婷, 王小灿, 等. 机械工程学报, 2020, 56(24), 72. 10 Xing L, Zhan M, Gao P F, et al. Progress in Natural Science: Materials International, 2021, 31(1), 77. 11 Marteleur M, Leclerc J, Colla M S, et al. Engineering Fracture Mechanics, 2021, 244(1), 1. 12 Li W Q, Ma J P, Cao R, et al. Materials Reports, 2024, 38(20), 202 (in Chinese). 李文清, 马景平, 曹睿, 等. 材料导报, 2024, 38(20), 202. 13 McClintock F A, Kaplan S M, Berg C A. International Journal of Fracture, 1966, 2(4), 614. 14 McClintock F A. Journal of Applied Mechanics, 1968, 35(2), 363. 15 Rice J R, Tracey D M. Journal of the Mechanics and Physics of Solids, 1969, 17(3), 201. 16 Argon A S, Im J, Safoglu R. Metallurgical and Materials Transactions A, 1975, 6(4), 825. 17 Landron C, Bouaziz O, Maire E, et al. Scripta Materialia, 2010, 63(10), 973. 18 Le Roy G, Embury J D, Edwards G, et al. Acta Metallrugica, 1981, 29(8), 1509. 19 French I E, Weinrich P F. Scripta Metallurgica, 1974, 8(2), 87. 20 Gurson A L. Journal of Engineering Materials and Technology, 1977, 99(1), 2. 21 Cockcroft M G, Latham D J. Journal of the Institute of Metals, 1968, 96, 33. 22 Brozzo P, Deluca B, Rendna R. In: Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group. Amsterdam, 1972. 23 Oyane M, Sato T, Okimoto K, et al. Journal of Mechanical Working Technology, 1980, 4(1), 65. 24 Bai Y L, Wierzbicki T. International Journal of Fracture, 2010, 161(1), 1. 25 Ye J H, Fan Z P. Engineering Mechanics, 2021, 38(5), 38 (in Chinese). 叶继红, 范志鹏. 工程力学, 2021, 38(5), 38. 26 Zhang J C, Lian C W, Han F. Journal of Mechanical Engineering, 2022, 58(8), 117 (in Chinese). 张骥超, 连昌伟, 韩非. 机械工程学报, 2022, 58(8), 117. 27 Deng Q F. Analysis for high temperature cracking behavior of MnS inclusions based on GTN damage model. Master's Thesis, Yanshan University, China, 2018(in Chinese). 邓清峰. 基于GTN模型的MnS夹杂物高温致裂行为研究. 硕士学位论文, 燕山大学, 2018. 28 Jiang W. Study of ductile fracture based on meso-damage mechanisms. Ph. D. Thesis, Northwestern Polytechnical University, China, 2016(in Chinese). 姜薇. 基于细观损伤机理的韧性断裂研究. 博士学位论文, 西北工业大学, 2016. 29 Dong J P, Wang S L, Zhou J, et al. Engineering Mechanics, 2021, 38(3), 239 (in Chinese). 董建鹏, 王时龙, 周杰, 等. 工程力学, 2021, 38(3), 239. 30 Zhang B, Liu J Z, Yang X S, et al. Materials Reports, 2024, 38(19), 223 (in Chinese). 张彪, 刘家招, 杨鑫三, 等. 材料导报, 2024, 38(19), 223. 31 Noell P J, Sabisch J E C, Medlin D L, et al. Acta Materialia, 2020, 184, 211. 32 Christensen R M. Journal of Engineering Materials and Technology, 2004, 126(1), 45. 33 Christensen R M. Journal of Applied Mechanics, 2006, 73(5), 852. 34 Lee J H, Oung J. Journal of Applied Mechanics, 2000, 67(2), 288. |
|
|
|