| INORGANIC MATERIALS AND CERAMIC MATRIX COMPOSITES |
|
|
|
|
|
| Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries |
| WU Yue1,2,3, ZHANG Da1,2,3,*, DONG Peng1,2,3, LIANG Feng1,2,3,*
|
1 National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China 2 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China 3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
|
|
Abstract The cathode materials play a pivotal role in determining the energy density and cycle lifespan of metal-ion batteries. Exploring innovative techniques for their preparation and modification is crucial for the application and development of metal-ion batteries. Highly active electrons, ions, molecules, free radicals, and other particles excited by plasma can make the materials undergo a range of physical or chemical reactions rapidly, so the applications of plasma technology in the preparation and modification of high-performance cathode materials have garnered widespread attention. This paper reviews recent advancements in the applications of plasma technology to the preparation and modification of cathode materials for metal-ion batteries. Initially, the basic principles of various plasma discharge modes, such as dielectric barrier discharge, radio frequency discharge, and glow discharge, are summarized. Subsequently, the applications and mechanism of plasma in the preparation and modification of cathode materials are introduced. Finally, the opportunities, challenges, and future research directions for the applications of plasma technology in the preparation and modification of cathode materials are discussed.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Aramendia E, Brockway P E, Taylor P G, et al. Nature Energy, 2024, 9(7), 1. 2 Jia S P, Kumakura S, McCalla E. Energy & Environmental Science, 2024, 17(13), 4343. 3 Xu Y F, Du Y C, Chen H, et al. Chemical Society Reviews, 2024, 53(13), 7202. 4 Jin S, Gao X S, Hong S F, et al. Joule, 2024, 8(3), 746. 5 Wang W Y, Zhu H, Gao Z P, et al. Modern Chemical Industry, 2020, 40(10), 80 (in Chinese). 汪惟源, 朱寰, 高正平, 等. 现代化工, 2020, 40(10), 80. 6 Dou S, Tao L, Wang R L, et al. Advanced Materials, 2018, 30(21), 1705850. 7 Bogaerts A, Neyts E C. ACS Energy Letters, 2018, 3(4), 1013. 8 Li J, Jing X C, Li Q Q, et al. Chemical Society Reviews, 2020, 49(11), 3565. 9 Wang DD, Zou Y Q, Tao L, et al. Chinese Chemical Letters, 2019, 30(4), 826. 10 Ouyang B, Zhang Y, Xia X, et al. Materials Today Nano, 2018, 3, 28. 11 Liang H F, Ming F W, Alshareef H N. Advanced Energy Materials, 2018, 8(29), 1801804. 12 Zhang Y Q, Rawat R S, Fan H J. Small Methods, 2017, 1(9), 1700164. 13 Joseph J, Murdock A T, Seo D H, et al. Advanced Materials Technologies, 2018, 3(9), 1700164. 14 Li C, Zhang T F, Qiu Z, et al. Carbon Energy, 2024, 7(2), e641. 15 Xie Z P, Tang Z G, Zhang D, et al. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105815. 16 Duan S X, Liu X, Wang Y N, et al. Plasma Processes and Polymers, 2017, 14(9), 1600218. 17 Gao T, Deng X J, Xue Q G, et al. JOM, 2024, 77, 1475. 18 Zhang Y, Mei H X, Cao Y, et al. Coordination Chemistry Reviews, 2021, 438, 213910. 19 Su F M, Zhang D, Liang F. Chinese Journal of Applied Chemistry, 2019, 36(8), 882 (in Chinese). 苏风梅, 张达, 梁风. 应用化学, 2019, 36(8), 882. 20 Hou D Y, Bai F N, Dong P, et al. Journal of Power Sources, 2023, 584, 233599. 21 Zhang Y, Zhou C G, Yang J, et al. Journal of Power Sources, 2022, 520, 230800. 22 Morrish R, Haak T, Wolden C A. Chemistry of Materials, 2014, 26(13), 3986. 23 Liang H F, Gandi A N, Anjum D H, et al. Nano Letters, 2016, 16(12), 7718. 24 Musil J, Baroch P. IEEE Transactions on Plasma Science, 2005, 33(2), 338. 25 Petitpas G, Rollier J D, Darmon A, et al. International Journal of Hydrogen Energy, 2007, 32(14), 2848. 26 Zhang Y, Xue S C, Yan X H, et al. Electrochimica Acta, 2023, 442, 141822. 27 Temmerman E, Akishev Y, Trushkin N, et al. Journal of Physics D: Applied Physics, 2005, 38(4), 505. 28 Clapa M, Gaj J. Sensors and Actuators A: Physical, 2021, 332, 113069. 29 de Cádiz M C, Arrabal A L, Lantada A D, et al. Scientific Reports, 2021, 11(1), 24175. 30 Song K G, Wang H, Jiao Z, et al. Journal of Hazardous Materials, 2022, 422, 126906. 31 Liu Y C, Xie Z P, Lu S Q, et al. Dalton Transactions, 2024, 53(27), 11454. 32 Yao J X, Miao J S, Li J X, et al. Applied Physics Letters, 2023, 122(8), 082905. 33 Gibalov V I, Pietsch G J. Journal of Physics D: Applied Physics, 2000, 33(20), 2618. 34 Cao S L, Ning J, He X, et al. Small, 2024, 20(31), 2311204. 35 Felten A, Bittencourt C, Pireaux J J, et al. Journal of Applied Physics, 2005, 98(7), 074308. 36 Wang B W, Xu L J, Cheng Y, et al. Journal of the Energy Institute, 2024, 114, 101629. 37 Wang B W, Xu L J, Cheng Y, et al. Journal of the Energy Institute, 2024, 114, 101629. 38 Mariotti D, Patel J, Svrcek V, et al. Plasma Processes and Polymers, 2012, 9(11-12), 1074. 39 Wang B W, Xu L J, Cheng Y, et al. Journal of the Energy Institute, 2024, 114, 101629. 40 Li Q C, Fu X W, Li H D, et al. Advanced Functional Materials, 2024, 34(48), 2408517. 41 Sun Y, Zang Y P, Tian W Z, et al. Energy and Environmental Science, 2022, 15(3), 1201. 42 Donnelly V M, Kornblit A. Journal of Vacuum Science & Technology A, 2013, 31(5), 050825. 43 Ye K, Liang F, Yao Y C, et al. Materials Reports, 2019, 33(7), 1089 (in Chinese). 叶凯, 梁风, 姚耀春, 等. 材料导报, 2019, 33(7), 1089. 44 Li Y, Chen M H, Liu B, et al. Advanced Energy Materials, 2020, 10(27), 2000927. 45 Akada K, Obata S, Saiki K. Carbon, 2022, 189, 571. 46 Zhang D, Dai Y N, Liang F. Materials Reports, 2017, 31(9), 64 (in Chinese). 张达, 戴永年, 梁风. 材料导报, 2017, 31(9), 64. 47 Wang X W, Sun G Z, Routh P, et al. Chemical Society Reviews, 2014, 43(20), 7067. 48 Banerjee S, Adhikari E, Sapkota P, et al. Materials, 2020, 13(13), 2931. 49 Wu Z X, Zhao Y, Jin W, et al. Advanced Functional Materials, 2021, 31(9), 2009070. 50 Tinoco J C, Estrada M, Baez H, et al. Thin Solid Films, 2006, 496(2), 546. 51 Zhang D, Mylsamy G, Yang X X, et al. Ceramics International, 2021, 47(12), 16972. 52 Yao Z Y, Kang Y, Hou M J, et al. Advanced Functional Materials, 2022, 32(16), 2111919. 53 Kimbulapitiya K M M D K, Rehman B, Wani S S, et al. Nano Energy, 2024, 122, 109235. 54 Shi Y M, Zhang B. Chemical Society Reviews, 2016, 45(6), 1529. 55 Srinivasan R, Demirev P A, Carkhuff B G, et al. Journal of the Electrochemical Society, 2020, 167(14), 140516. 56 Wood K N, Noked M, Dasgupta N P. ACS Energy Letters, 2017, 2(3), 664. 57 Kim W, Park S, Ko G, et al. Journal of Physics and Chemistry of Solids, 2022, 170, 110925. 58 Zhang Y, Zhang YY, Li C E, et al. Coordination Chemistry Reviews, 2024, 519, 216103. 59 Jiang Q Q, Xu L, Huo J, et al. RSC Advances, 2015, 5(92), 75145. 60 Jiang Q Q, Zhang H, Wang S Y. Green Chemistry, 2016, 18(3), 662. 61 Ajayi B P, Thapa A K, Cvelbar U, et al. Chemical Engineering Science, 2017, 174, 302. 62 Vendra V K, Nguyen T Q, Thapa A K, et al. RSC Advances, 2015, 5(46), 36906. 63 Yang Y H, Wang J Z, Wang C, et al. Green Chemistry, 2020, 22(21), 7460. 64 Liang Z M, Li T Y, Chi H, et al. Energy & Environmental Materials, 2024, 7(1), 28. 65 Zhu S G, Qin Y, Zhang J. International Journal of Electrochemical Science, 2016, 11(7), 6403. 66 Meng F B, Hu R Z, Chen Z W, et al. Journal of Energy Chemistry, 2021, 56, 46. 67 Hou D Y, Chen J, Bai F N, et al. Journal of Power Sources, 2024, 613, 234845. 68 Han W Z, Lai Q S, Gao X W, et al. Energy Storage Science and Technology, 2023, 12(5), 1364(in Chinese). 韩文哲, 赖青松, 高宣雯, 等. 储能科学与技术, 2023, 12(5), 1364. 69 Cai Y Q, Zeng X, Pang D W, et al. Materialia, 2023, 27, 101674. 70 Wei Y F, Xia H C, Zhang J N. Materials Reports, 2024, 38(8), 39 (in Chinese). 魏一帆, 夏会聪, 张佳楠. 材料导报, 2024, 38(8), 39. 71 Liu Z G, Hu Y Y, Dunstan M T, et al. Chemistry of Materials, 2014, 26(8), 2513. 72 Song W X, Liu S Q. Solid State Sciences, 2013, 15, 1. 73 Shakoor R A, Seo D H, Kim H, et al. Journal of Materials Chemistry, 2012, 22(38), 20535. 74 Moossa B, Abraham J J, Ahmed A M, et al. Materials Research Bulletin, 2025, 182, 113173. 75 Nadeina A, Rozier P, Seznec V. Energy Technology, 2020, 8(5), 1901304. 76 Jiang W W, Xu X L, Liu Y X, et al. Journal of Alloys and Compounds, 2020, 827, 154273. 77 Jiang Q Q, Chen N, Liu D D, et al. Nanoscale, 2016, 8(21), 11234. 78 Zhang Y L, Yuan Z X, Zhang H, et al. Acta Chimica Sinica, 2023, 81(12), 1724 (in Chinese). 张雅岚, 苑志祥, 张浩, 等. 化学学报, 2023, 81(12), 1724. 79 Wang Y M, Liu K, Wang B G. Chemical Journal Chinese Universities, 2021, 42(5), 1514 (in Chinese). 王弈艨, 刘凯, 王保国. 高等学校化学学报, 2021, 42(5), 1514. 80 Hemmelmann H, Dinter J K, Elm M T. Advanced Materials Interfaces, 2021, 8(9), 2002074. 81 Ren X G, Li Y J, Xi X M, et al. Journal of Power Sources, 2021, 499, 229756. 82 Julien C M, Mauger A. Energies, 2020, 13(23), 6363. 83 Zha G J, Luo Y P, Hu N G, et al. ACS Applied Materials & Interfaces, 2020, 12(32), 36046. 84 Fu J, Xie W N, Zhi M Y. Materials Reports, 2023, 37(S1), 23040181(in Chinese). 付举, 谢雯娜, 智茂永. 材料导报, 2023, 37(S1), 23040181. 85 Becker D, Börner M, Nölle R, et al. ACS Applied Materials & Interfaces, 2019, 11(20), 18404. 86 Liang L W, Zhang W H, Zhao F, et al. Advanced Materials Interfaces, 2020, 7(3), 1901749. 87 Liu Y, Liu W B, Zhu M Y, et al. Journal of Alloys and Compounds, 2021, 888, 161594. 88 Liu X H, Kou L Q, Shi T, et al. Journal of Power Sources, 2014, 267, 874. 89 Muruganantham R, Tseng T H, Lee M L, et al. Chemical Engineering Journal, 2023, 464, 142686. 90 Chang W, Choi J W, Im J C, et al. Journal of Power Sources, 2010, 195(1), 320. 91 Hata J I, Hirayama M, Suzuki K, et al. Batteries & Supercaps, 2019, 2(5), 454. 92 Goodenough J B. Nature Electronics, 2018, 1(3), 204. 93 Zhang Y, Jing X, Yan X H, et al. Coordination Chemistry Reviews, 2024, 499, 215494. 94 Xie H L, Zhao Q Y, Zhang T A, et al. Materials Reports, 2022, 36(S1), 324 (in Chinese). 谢焕玲, 赵秋月, 张廷安, 等. 材料导报, 2022, 36(S1), 324. 95 Xia Y, Zheng J M, Wang C M, et al. Nano Energy, 2018, 49, 434. 96 Xu X, Huo H, Jian J Y, et al. Advanced Energy Materials, 2019, 9(15), 1803963. 97 Yuan K, Li N, Ning R Q, et al. Nano Energy, 2020, 78, 105239. 98 Qiu Y H, Wei X B, Liu N, et al. Electrochimica Acta, 2022, 428, 140973. 99 Chen Z W, Liu Y X, Lu Z C, et al. Journal of Alloys and Compounds, 2019, 803, 71. 100 Yi G D, Fan CL, Hu Z, et al. Electrochimica Acta, 2021, 383, 138370. 101 Fu Y Q, Wei Q L, Zhang G X, et al. Advanced Energy Materials, 2018, 8(26), 1801445. 102 Cao P F, Liu Y T, Chen N, et al. Materials Reports, 2022, 36(23), 31 (in Chinese). 曹鹏飞, 刘雅婷, 陈妮, 等. 材料导报, 2022, 36(23), 31. 103 Alfaruqi M H, Islam S, Gim J, et al. Chemical Physics Letters, 2016, 650, 64. 104 Pan H L, Shao YY, Yan P F, et al. Nature Energy, 2016, 1(5), 1. 105 Huang YY, Wang Y Q, Tang C, et al. Advanced Materials, 2019, 31(13), 1803800. 106 Lin M X, Shao F Q, Weng S T, et al. Electrochimica Acta, 2021, 378, 138147. 107 Lin M X, Shao F Q, Tang Y, et al. Journal of Colloid and Interface Science, 2022, 611, 662. 108 Teng C L, Zhang C Q, Yin K S, et al. Science China-Materials, 2022, 65(4), 920. 109 Cai P, Wang K L, He X, et al. Energy Storage Materials, 2023, 60, 102835. 110 Chiu K F. Thin Solid Films, 2007, 515(11), 4614. 111 Takeuchi T, Tabuchi M, Ado K, et al. Journal of Power Sources, 2007, 174(2), 1063. 112 Wu J Y, Shao YJ, Wang B B, et al. Plasma Processes and Polymers, 2016, 13(10), 1008. 113 Perego D, Heng J S T, Wang X H, et al. Electrochimica Acta, 2018, 283, 228. 114 Chen C L, Chiu K F, Chen Y R, et al. Journal of the Chinese Chemical Society, 2012, 59(10), 1258. 115 Nie B, Li M, Yao T, et al. Carbon, 2023, 206, 105. 116 Qian J, You Y, Fan Z, et al. Journal of Energy Storage, 2023, 63, 106988. 117 Xie M, Lin M, Feng C, et al. Journal of Colloid and Interface Science, 2023, 645, 400. |
|
|
|