| METALS AND METAL MATRIX COMPOSITES |
|
|
|
|
|
| Review on Lamellar Structure Discontinuous Coarsening Transition in TiAl Alloy |
| WANG Kehan1,2, LIU Han1,2, ZONG Xiao1,2, LIANG Yongfeng3, NAN Hai1,2, LIN Junpin3, DING Xianfei1,2,*
|
1 AECC Beijing Institute of Aeronautical Material, Beijing 100095, China 2 Beijing Engineering Research Center of Advanced Titanium Alloy Precision Forming Technology, Beijing 100095, China 3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
|
|
|
Abstract TiAl alloy has excellent specific strength, oxidation resistance and creep resistance, which make it have a broad application prospect in the field of high temperature structural materials, and it is necessary to master the law of its organization stability in the near service condition to realize its engineering application. Lamellar structure is the most important microstructure in TiAl alloy. In this summary, the types of continuous and discontinuous coarsening of TiAl alloy lamellar structure were introduced. Various factors affecting the discontinuous coarsening behavior of TiAl alloy, including temperature, time, Al content and anisotropy of lamellar structure, were discussed. It is worth noting that no clear relationship has been established between the discontinuous coarsening transition and the anisotropy properties of the laminar structure, and the principle of physical metallurgy in the process is still unclear. Therefore, it is necessary to further enrich and improve the understanding of the discontinuous coarsening transition mechanism of TiAl alloy from the perspective of anisotropy. This is of great significance for the subsequent practical application design of TiAl alloy material. Finally, the thermodynamic driving forces of the discontinuous coarsening behavior of TiAl alloy, including che-mical free energy and interfacial energy, were analyzed, and the kinetic characteristics of discontinuous coarsening under the influence of tempe-rature, time and Al content were briefly described.
|
|
Published: 10 January 2026
Online: 2026-01-09
|
|
|
|
|
1 Lin J P, Chen G L. Materials China, 2009, 28(1), 31(in Chinese). 林均品, 陈国良. 中国材料进展, 2009, 28(1), 31. 2 Appel F, Brossmann U, Christoph U, et al. Advanced Engineering Materials, 2000, 2(11), 699. 3 Kim Y W. JOM, 1989, 41, 24. 4 Kim Y W. JOM, 1995, 47, 39. 5 Kim Y W, Dimiduk D M. JOM, 1991, 43, 40. 6 Yamaguchi M, Inui H, Ito K. Acta Materialia, 2000, 48(1), 307. 7 Jarvis D, Voss D. Materials Science and Engineering A, 2005, 413, 583. 8 Kim Y W, Kim S L. JOM, 2018, 70(4), 553. 9 Cao S Z, Han J C, Wang H F, et al. Materials Science and Engineering A, 2022, 857, 144053. 10 Yue X A, Shen J, Xiong Y L, et al. Intermetallics, 2022, 140, 107406. 11 Yu Y H, Kou H C, Wang Y R, et al. Scripta Materialia, 2023, 223, 115080. 12 Chen G, Peng Y B, Zheng G, et al. Nature Materials, 2016, 15, 876. 13 Wang J G, Nieh T G. Intermetallics, 2000, 8(7), 737. 14 Schuster J C, Palm M. Journal of Phase Equilibria and Diffusion, 2006, 27, 255. 15 Clemens H, Kestler H. Advanced Engineering Materials, 2000, 2(9), 551. 16 Cui R Y, Pan D X, Liu Z C, et al. Development and Application of Materials, 2024, 39(5), 79(in Chinese). 崔若尧, 潘冬星, 刘志成, 等. 材料开发与应用, 2024, 39(5), 79. 17 Jiang J, Zhao Y F, Deng Q, et al. China Metalforming Equipment & Manufacturing Technology, 2024, 59(3), 117(in Chinese). 江剑, 赵一帆, 邓琦, 等. 锻压装备与制造技术, 2024, 59(3), 117. 18 Zhang M, Zhang S Q, Wang D, et al. Chinese Journal of Materials Research, 2023, 37(6), 417(in Chinese). 张敏, 张思倩, 王栋, 等. 材料研究学报, 2023, 37(6), 417. 19 Ramanujan R V, Maziasz P J, Liu C T. Acta Materialia, 1996, 44(7), 2611. 20 Sharma G, Ramanujan R V, Tiwari G P. Acta Materialia, 2000, 48(4), 875. 21 Huang B Y. Intermetallics of titanium aluminides, Central South University Press, China, 1998(in Chinese). 黄伯云. 钛铝基金属间化合物, 中南工业大学出版社, 1998. 22 Appel F, Paul J D H, Oehring M. Gamma titanium aluminide alloys, science and technology, John Wiley & Sons, USA, 2011. 23 Inkson B J, Clemens H, Marien J. Scripta Materialia, 1998, 38(9), 1377. 24 Cao C X, Li Z X, Sun F S. Transactions of Materials and Heat Treatment, 2001, 22(1), 2(in Chinese). 曹春晓, 李臻熙, 孙福生. 材料热处理学报, 2001, 22(1), 2. 25 Hu R, Wang X Y, Yang J R, et al. Aeronautical Manufacturing Technology, 2017, 60(23-24), 30(in Chinese). 胡锐, 王旭阳, 杨劼人, 等. 航空制造技术, 2017, 60(23-24), 30. 26 Kampe J M, Courtney T H, Leng Y. Acta Metallurgica, 1989, 37(7), 1735. 27 Denquin A, Naka S. Acta Materialia, 1996, 44(1), 353. 28 Chen R R, Wang Q, Yang Y H, et al. Intermetallics, 2018, 93, 47. 29 Yamamoto R, Mizoguchi K, Wegmann G, et al. Intermetallics, 1998, 6(7-8), 699. 30 Gao Z T, Hu R, Wu Y L, et al. Rare Metal Materials and Engineering, 2019, 48(9), 3071(in Chinese). 高子彤, 胡锐, 吴与伦, 等. 稀有金属材料与工程, 2019, 48(9), 3071. 31 Bian C, Wang X M. Foundry Technology, 2015, 36(2), 306(in Chinese). 卞琛, 王新贸. 铸造技术, 2015, 36(2), 306. 32 Wang X P, Zheng Y R. Journal of Materials Engineering, 2000(7), 20(in Chinese). 汪小平, 郑运荣. 材料工程, 2000(7), 20. 33 Shong D S, Kim Y W. Scripta Metallurgica, 1989, 23(2), 257. 34 Tang J C, Huang B Y, He Y H, et al. Transactions of Nonferrous Metals Society of China, 2000, 10(1), 10. 35 Fang L. Investigation on the thermal stabilities of microstructure in fully lamellar high Nb containing TiAl alloys. Ph. D. Thesis, University of Science and Technology Beijing, China, 2017(in Chinese). 方璐. 全片层高 Nb-TiAl 合金显微组织热稳定性研究. 博士学位论文, 北京科技大学, 2017. 36 Manna I, Pabi S K, Gust W. International Materials Reviews, 2001, 46(2), 53. 37 Wang J J, Jiang M, Hao S M. Rare Metal Materials and Engineering, 1998, 27(3), 161(in Chinese). 王继杰, 蒋敏, 郝士明. 稀有金属材料与工程, 1998, 27(3), 161. 38 Livingston J D, Cahn J W. Acta Metallurgica, 1974, 22(4), 495. 39 Ju C P, Fournelle R A. Acta Metallurgica, 1985, 33(1), 71. 40 Mitao S, Bendersky L A. Acta Materialia, 1997, 45(11), 4475. 41 Huang Z W. Intermetallics, 2013, 42, 170. 42 Qin G W, Wang J J, Hao S M. Intermetallics, 1999, 7(1), 1. 43 Jung J Y, Park J K. Acta Materialia, 1998, 46(12), 4123. 44 Qin G W, Oikawa K, Sun Z M, et al. Metallurgical and Materials Tran-sactions A, 2001, 32, 1927. 45 Zhang J, Zhang J W, Zou D X, et al. Journal of Aeronautical Materials, 1996, 16(1), 1(in Chinese). 张继, 张建伟, 邹敦叙, 等. 航空材料学报, 1996, 16(1), 1. 46 Lee D B. Metals and Materials International, 2005, 11(2), 141. 47 Wang J N, Zhu J, Wu J S, et al. Acta Materialia, 2002, 50(6), 1307. 48 Maziasz P J, Ramanujan R V, Liu C T, et al. Intermetallics, 1997, 5(2), 83. 49 Yang J R, Cao B, Wu Y L, et al. Materialia, 2019, 5, 100169. 50 Zghal S, Thomas M, Naka S, et al. Acta Materialia, 2005, 53(9), 2653. 51 Fang L, Ding X F, He J P, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(10), 3095. 52 Niu H Z, Chen X J, Chen Y F, et al. Materials Science and Engineering A, 2020, 784, 139313. |
|
|
|